Дано: окружность с центром О LK-касательная,K-точка касания, LM - касательная, E - точка касания MT- касательная,T- точка касания, KL=9, TM = 16 Найти : OK
Пирамида SABCD правильная, значит в основании ее лежит квадрат, а боковые грани - равносторонние треугольники со стороной = 6 (дано). Апофема пирамиды SABCD (высота ее боковых граней) равна SH=√(SD²-DH²) = √(36-9) = 3√3см.
Площадь БОКОВОЙ поверхности пирамиды DTSC - это сумма площадей ее БОКОВЫХ граней: Stcd+Stsd+Ssdc. (D - вершина этой пирамиды). TD=(2/3)*AD = (2/3)*6 = 4 (из соотношения AT:TD=1:2).
Stcd = (1/2)*TD*DC = (1/2)*4*6 = 12см².
Stsd = (1/2)*TD*SH = (1/2)*4*3√3 = 6√3см².
Ssdc = (1/2)*DC*SH = (1/2)*6*3√3 = 9√3см².
Sбок = (12+15√3)см².
ответ: площадь боковой поверхности пирамиды DTSC равна
a) Пусть Середины ребер AC и BC - Соответственно D и E .
DE - очевидно 3 , поэтому надо доказать что апофемы пирамиды MD и ME тоже равны трем.
Рассмотрим треугольник AME . Он по условию прямоугольный с прямым углом M ( MA перпендикулярно MBC )
Высота MO Проецируется в центр основания ABC ( пирамида правильная )
AE = 6√3/2 = 3√3
AO=2√3
EO = √3
пусть высота MO - h
тогда по теореме Пифагора
h^2+(√3)^2+h^2+(2√3)^2=(3√3)^2
Откуда h=√6
ME^2 = h^2+3
ME=3
Доказано.
б) Пусть С - начало координат
Ось X - CA
Ось Y - перпендикулярно X в сторону B
Ось Z - перпендикулярно ABC в сторону M
Координаты Точек
D(3;0;0)
E(3/2;3√3/2;0)
M(3;√3;√6)
Уравнение плоскости DEM
ax+by+cz+d=0 подставляем координаты точек
3a+d=0
3a/2+3√3b/2+d=0
3a+√3b+√6c+d=0
Пусть d= -6 Тогда a=2 b=2/√3 c= - 2/√6
2x+ 2y/√3 - 2z/√6 - 6 =0
k=√ (4+4/3+4/6) = √6
Нормализованное уравнение
2x/√6+ 2y/(√3√6) - 2z/(√6√6) - 6/√6 =0
Расстояние от С (начала координат) до Плоскости DEM Равно
6/√6 = √6
Пирамида SABCD правильная, значит в основании ее лежит квадрат, а боковые грани - равносторонние треугольники со стороной = 6 (дано). Апофема пирамиды SABCD (высота ее боковых граней) равна SH=√(SD²-DH²) = √(36-9) = 3√3см.
Площадь БОКОВОЙ поверхности пирамиды DTSC - это сумма площадей ее БОКОВЫХ граней: Stcd+Stsd+Ssdc. (D - вершина этой пирамиды). TD=(2/3)*AD = (2/3)*6 = 4 (из соотношения AT:TD=1:2).
Stcd = (1/2)*TD*DC = (1/2)*4*6 = 12см².
Stsd = (1/2)*TD*SH = (1/2)*4*3√3 = 6√3см².
Ssdc = (1/2)*DC*SH = (1/2)*6*3√3 = 9√3см².
Sбок = (12+15√3)см².
ответ: площадь боковой поверхности пирамиды DTSC равна
Sdtsc=(12+15√3)см².