Если на одной из двух прямых отложить несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Пусть дан отрезок ВС.
От конца В отрезка начертить луч и на нем от В отметить через равные промежутки 5 точек. Из пятой точки провести прямую через т.С отрезка ВС и провести параллельно ей прямые, пересекающие отрезок ВС. Этими прямыми ВС будет разделен на 5 равных частей. Любые две соседние части равны 2/5 исходного отрезка ВС.
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=12). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды. Проведем апофему пирамиды SK - это высота боковой грани. Двугранный угол SKО равен 30°. Из прямоугольного ΔSKО найдем SK (KO=АВ/2=12/2=6): SK=ОК/cos 30=6 / √3/2=12/√3=4√3 Площадь основания Sосн=АВ²=12²=144 Периметр основания Р=4АВ=4*12=48 Площадь боковой поверхности Sбок=P*SK/2=48*4√3/2=96√3≈166,28 Площадь полной поверхности Sполн=Sбок+Sосн=96√3+144≈310,28
Если на одной из двух прямых отложить несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Пусть дан отрезок ВС.
От конца В отрезка начертить луч и на нем от В отметить через равные промежутки 5 точек. Из пятой точки провести прямую через т.С отрезка ВС и провести параллельно ей прямые, пересекающие отрезок ВС. Этими прямыми ВС будет разделен на 5 равных частей. Любые две соседние части равны 2/5 исходного отрезка ВС.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=12). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Двугранный угол SKО равен 30°.
Из прямоугольного ΔSKО найдем SK (KO=АВ/2=12/2=6):
SK=ОК/cos 30=6 / √3/2=12/√3=4√3
Площадь основания Sосн=АВ²=12²=144
Периметр основания Р=4АВ=4*12=48
Площадь боковой поверхности
Sбок=P*SK/2=48*4√3/2=96√3≈166,28
Площадь полной поверхности
Sполн=Sбок+Sосн=96√3+144≈310,28