Длины отрезков, соединяющие середины ПРОТИВОПОЛОЖНЫХ сторон, заданы в условиии. В самом деле, треугольники, образованные диагоналями и основаниями, очевидно подобны, то есть их стороны относятся, как основания. Раз диагонали равны, то равны и отрезки этих диагоналей от вершин до точки пересечения, то есть это равнобедренные треугольники, с равными улами при основаниях, а это означает, что треугольники, образованные (например) большим основанием, боковой стороной и диагональю, равны по двум сторонам и углу между ними. Поэтому трапеция, у которой диагонали равны - равнобедренная.Раз так, то отрезок, соединяющий середины оснований - это попросту высота, по условию это 8. Отрезок, соединяющий середины боковых сторон - это средняя линяя, она равна 8.Остается найти длину отрезков, соединяющих середины соседних сторон. Для этого надо найти длину диагонали.Проводится высота из вершины малого основания, получается прямоугольный треугольник с катетами 8 (это высота) и 8 - это часть большого основания. В самом деле, от ближайшего конца большого основания до конца проведенной высоты (9 - 7)/2 = 1, поэтому до другого конца 9 - 1 = 8.Диагональ - гипотенуза в этом треугольнике, она равна 8*корень(2).Длина отрезка, соединяющего середины соседних сторон, равна половине диагонали - как средняя линяя в треугольнике, образованном диагональю и двумя сторонами трапеции. То есть она равна 4*корень(2).Ясно, что такая длина у всех четырех отрезков, соединяющих середины любой пары соседних сторон. Поэтому эти отрезки образуют ромб. Однако в данной задаче это не просто ромб, а квадрат, поскольку высота равна средней линии. :)
Я не знаю, как точно передать свои мысли, но постараюсь передать свое понимание данного вопроса, как могу))) Так вот, функции син., кос., тг., кт., непосредственно связаны с углами, т.е они выражают числовое значение того или иного угла. Поэтому, когда вычисляют числовое значение того или иного угла, с давних пор уже, еще со времен, когда возникли сами понятия синус, косинус и т.п берут единичную окружность, проводят в ней перпендикулярные диаметры, и для облегчения вычислений, берут четвертую часть данной окружности, соединяют концы сторон данного прямого угла—получается прямоугольный треугольник. А между углами прямоугольного треугольника и тригонометрическими функциями есть прямая зависимость, т.е чем больше/меньше тот или иной угол, тем больше/меньше тригонометрическая функция. А связь между углом и его противолежащей стороной простая: при возрастании/убывании угла возрастает/убывает и ее противолежащая сторона. А т.к между тригонометрическими функциями и углами, между углами и сторонами существует прямая зависимость, то мы вправе утверждать, что между тригонометрическими функциями острого угла и сторонами прямоугольного треугольника существует прямая зависимость