Дано прямокутну трапецію, менша основа якої дорівнює 8 см. Менша бічна сторона дорівнює 4 см, а більша бічна сторона утворює з основою ∠45°. Знайди площу трапеції.
АСВ – правильный треугольник, Н – центр данного треугольника (центр вписанной и описанной окружностей). РМ – апофема заданной пирамиды. ММ₁ – апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости пересекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности
Найдём НМ - радиус вписанной окружности в правильный треугольник:
ответ:
Объяснение: РАВС - правильная треугольная пирамида, АВ=12 , РН=8, А₁В₁С₁║АВС .
АСВ – правильный треугольник, Н – центр данного треугольника (центр вписанной и описанной окружностей). РМ – апофема заданной пирамиды. ММ₁ – апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости пересекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности
Найдём НМ - радиус вписанной окружности в правильный треугольник:
Рассм. ΔРНМ:
ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение: