Прямой называется призма, боковое ребро которой перпендикулярно плоскости основания. Все боковые грани прямой призмы прямоугольники.Основание призмы тоже прямоугольник (дано). а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей. б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору: bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору: bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5. Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5. ответ: тангенс искомого угла равен 0,5.
Угол В 90 градусов, значит угол А плюс Угол С = 180-90=90 градусов.
Сумма (уменьшенных в два раза биссектрисами) углов при вершинах А и С в треугольнике АОВ будет в два раза меньше, т.е. 90:2= 45 градусов.
Сумма углов в треугольнике = 180 градусам, тогда искомый угол АОВ будет равен 180-45=135 градусов.
Задача 2.
В задаче дано, что угол при вершине В равен 60 градусов, при этом DBA = 30 градусам (получается половина 60ти), получается, что DB - биссектриса. Особенным свойством биссектрисы является то, что каждая точка биссектрисы равноудалена от сторон угла. Расстояние до стороны ВА дано и равно 4 (отрезок DA), расстояние от точки Д до стороны СВ будет таким же, т.е. 4.
Задание 3(Первое фото)
Задание 4
67градусов и 30 минут=45 градусов + 22 градуса 30 минут.
1. Строите развернутый угол (180 градусов). С циркуля и линейки делите его пополам. Получаете угол в 90 градусов.
2. Аналогичным образом угол в 90 градусов делите пополам, получаете два смежных угла по 45.
3. Один из этих углов оставляете в покое, другой аналогично делите пополам. Это будут два угла по 22 градуса 30 минут.
4. Один из полученных маленьких углов и оставленный в покое угол в 45 градусов дадут в сумме 67 градусов 30 минут.
а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей.
б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору:
bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору:
bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5.
Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5.
ответ: тангенс искомого угла равен 0,5.
Задача 1.
Угол В 90 градусов, значит угол А плюс Угол С = 180-90=90 градусов.
Сумма (уменьшенных в два раза биссектрисами) углов при вершинах А и С в треугольнике АОВ будет в два раза меньше, т.е. 90:2= 45 градусов.
Сумма углов в треугольнике = 180 градусам, тогда искомый угол АОВ будет равен 180-45=135 градусов.
Задача 2.
В задаче дано, что угол при вершине В равен 60 градусов, при этом DBA = 30 градусам (получается половина 60ти), получается, что DB - биссектриса. Особенным свойством биссектрисы является то, что каждая точка биссектрисы равноудалена от сторон угла. Расстояние до стороны ВА дано и равно 4 (отрезок DA), расстояние от точки Д до стороны СВ будет таким же, т.е. 4.
Задание 3(Первое фото)
Задание 4
67градусов и 30 минут=45 градусов + 22 градуса 30 минут.
1. Строите развернутый угол (180 градусов). С циркуля и линейки делите его пополам. Получаете угол в 90 градусов.
2. Аналогичным образом угол в 90 градусов делите пополам, получаете два смежных угла по 45.
3. Один из этих углов оставляете в покое, другой аналогично делите пополам. Это будут два угла по 22 градуса 30 минут.
4. Один из полученных маленьких углов и оставленный в покое угол в 45 градусов дадут в сумме 67 градусов 30 минут.