дано пряму а і чотири точки К, L, D, і F , які не лежать на цій прямій. Чи перетинає пряму а відрвзок КF, якщо відрізок KD і LD перетинають пряму , а відрізок FL не перетинає її? Поясніть відповідь
Высота и биссектриса совпадают ⇒треугольник АВМ равнобедренный, ВМ=АВ
Длины сторон треугольника ABC — последовательные целые числа (дано).
Примем сторону АВ=х, АС=х+1, ВС=х+2
Тогда СМ=х+2-х=2
Т.к. АМ медиана, то ВМ=СМ=2, ⇒
ВС=4, АВ=ВМ=2, АС=2+1=3
Предположим, что большей является сторона АС. Тогда АВ=1, ВС=2, АС=3; это противоречит теореме о неравенстве треугольника (3=1+2). Следовательно, АВ=2, АС=3, ВС=4
Правильная призма — это прямая призма, основанием которой является правильный многоугольник (в нашем случае - квадрат). Боковые грани правильной призмы — равные прямоугольники (в нашем случае стороны этих прямоугольников равны а и 2а). Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник со сторонами, равными высоте призмы (2а) и диагонали основания (в нашем случае а√2, так как по Пифагору d=√(a²+a²)). Таким образом, площадь диагонального сечения нашей призмы равна Sд=2а*а√2=2а²√2 ед².
Обозначим медиану АМ, биссектрису ВК.
ВК⊥АМ и пересекает ее в т.Н.
ВН является высотой ∆ АВМ.
Высота и биссектриса совпадают ⇒треугольник АВМ равнобедренный, ВМ=АВ
Длины сторон треугольника ABC — последовательные целые числа (дано).
Примем сторону АВ=х, АС=х+1, ВС=х+2
Тогда СМ=х+2-х=2
Т.к. АМ медиана, то ВМ=СМ=2, ⇒
ВС=4, АВ=ВМ=2, АС=2+1=3
Предположим, что большей является сторона АС. Тогда АВ=1, ВС=2, АС=3; это противоречит теореме о неравенстве треугольника (3=1+2). Следовательно, АВ=2, АС=3, ВС=4
Периметр АВС=2+3+4=9 (ед. длины)
Таким образом, площадь диагонального сечения нашей призмы равна Sд=2а*а√2=2а²√2 ед².