В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
aza54
aza54
15.06.2021 21:13 •  Геометрия

Дано: R = 5, АВ - касательная.Найти: ОВ.

Показать ответ
Ответ:
IkaNika
IkaNika
15.02.2022 16:03
Во первых, уточним, что прямая р лежит в ОДНОЙ плоскости  с треугольником АВС.
Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну".
Следствие из этой аксиомы:
Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного.
Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную  второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых.
Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB.
Что и требовалось доказать.

Прямая p параллельна стороне ab треугольника abc. докажите,что прямы bc и ac пересекают прямую p объ
0,0(0 оценок)
Ответ:
loginov555
loginov555
15.02.2022 16:03
Во первых, уточним, что прямая р лежит в ОДНОЙ плоскости  с треугольником АВС.
Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну".
Следствие из этой аксиомы:
Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного.
Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную  второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых.
Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота