Пусть есть пирамида SABCD. Так как пирамида правильная, в основании лежит квадрат ABCD со стороной 14 см. Основание высоты пирамиды совпадает с центром квадрата. Боковые грани равнобедренные треугольники. Высота боковой грани – апофема. Полная поверхность S = Sбок + Sосн , Sбок = Pl/2 , где Р периметр основания, Sосн = a^2, Sосн = 14·14 = 196 (смˆ2), Р = 4·а = 4·14 = 56 (см). Найдем апофему Рассмотрим треугольник , который образует апофема, высота пирамиды и отрезок, соединяющий основание апофемы и центр квадрата и равен половине стороны квадрата 7 см. Треугольник прямоугольный, отрезок - катет, апофема – гипотенуза , угол 45°, апофема = катет/cos 45° = 7/cos 45° = 7/√2/2 = 7√2 ; Sбок = 56·7√2/2 = 196√2, S = 196√2 + 196 = 196(1 +√2) Смˆ2
а )7,2 и 9.
7+2=9 Это вырожденный треугольник
б ) 5,8 и 6
5+8>6
8+6>5 Этот треугольник существует
5+6>8
в ) 16,12 и 12
16+12>12
12+12>16
Этот треугольник существует, он равнобедренный
г ) 5,7 и 12
5+7=12 Вырожденный треугольник
д ) 7,10 и 5
7+10>5
7+5>10
10+5>7
Треугольник существует
е ) 7,14 и 10
7+14>10
14+10>7
7+10>14
Такой треугольник существует
ё )7.29 и 12
7+12< 29
Такого треугольника не существует
ж ) 11.11 и 19
11+11>19
11+19>11
Это равнобедренный треугольник и он существует
Объяснение: