1) Пусть ABCD - прямоугольная трапеция, в которую вписана окружность. CF=4 см и FD=25 см. 2) Площадь трапеции можно найти по формуле: S=(AD+BC)*AB/2, где AD и BC - основания трапеции, AB - высота трапеции. 3) Можно использовать следующее свойство для прямоугольной трапеции, в которую вписана окружность: Если точка касания делит боковую сторону на отрезки m и n, то радиус вписанной окружности равен r=√(mn). Находим радиус вписанной окружности: r=√(4*25)=√100=10 (см). Значит, высота АВ=2r=2*10=20 (см). 4) Так как центр вписанной окружности является точкой пересечения биссектрис углов трапеции, то KC=CF=4 см, FD=DE=25 см. 5) AMOE=MBKO - квадраты со стороной, равной радиусу вписанной окружности, т.е. AE=BK=10 см. Таким образом, получаем, AD=10+25=35 (см), BC=10+4=14 (см). 6) Находим площадь трапеции: S=(AD+BC)*AB/2=(35+14)*20/2=49*10=490 (cм²).
Еще площадь прямоугольной трапеции, в которую вписана окружность можно найти по отдельной формуле: S=AD*BC (произведение оснований). S=35*14=490 (см²). ответ: 490 см².
OC ⊥ BM ( OC ⊥ BC ,где O центр малой окружности , BC касательная) ⇒ AM | | OC . MC/CB= AO/OB (обобщенная теорема Фалеса) .
2,4 /4 =r/(2R -r) ⇔ r=3R/4 (1) .
Из ΔBCO по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16 ⇔ R(R-r) =4 (2).
R(R -3R/4) =4 ⇒ R =4. ⇒ r=3R/4 = 3.
AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²) = 2,4√5.
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5 =3,2√5 .
2) Площадь трапеции можно найти по формуле:
S=(AD+BC)*AB/2, где AD и BC - основания трапеции, AB - высота трапеции.
3) Можно использовать следующее свойство для прямоугольной трапеции, в которую вписана окружность:
Если точка касания делит боковую сторону на отрезки m и n, то радиус вписанной окружности равен r=√(mn).
Находим радиус вписанной окружности:
r=√(4*25)=√100=10 (см).
Значит, высота АВ=2r=2*10=20 (см).
4) Так как центр вписанной окружности является точкой пересечения биссектрис углов трапеции, то KC=CF=4 см, FD=DE=25 см.
5) AMOE=MBKO - квадраты со стороной, равной радиусу вписанной окружности, т.е. AE=BK=10 см.
Таким образом, получаем, AD=10+25=35 (см), BC=10+4=14 (см).
6) Находим площадь трапеции:
S=(AD+BC)*AB/2=(35+14)*20/2=49*10=490 (cм²).
Еще площадь прямоугольной трапеции, в которую вписана окружность можно найти по отдельной формуле:
S=AD*BC (произведение оснований).
S=35*14=490 (см²).
ответ: 490 см².