В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
60 см
Объяснение:
Дана прямоугольная трапеция, BC - малое основание,AD- большое основание, <A=<B = 90, <D = 30
Радиус вписанной окр-ти по т.Пифагора
r = √(13^2 - 12^2) = 5
Проведем из точки C к AD высоту CH = AB = 2r = 10
Тр-к CDH - прямоугольный
CD = CH/sin30 = 10/0,5 = 20
HD = CHcos30 = 5√3
BC = AH = x
AD = AH + HD = x + 5√3
p = P/2 = (BC + AB + CD + AD)/2 = (x + 10 + 20 + x + 5√3)/2 = x + 15 + 2,5√3
S = p*r = (x + 15 + 2,5√3)*5
S = (BC + AD)/2 * AB = (x + x + 5√3)/2 * 10 = (2x + 5√3)*5
Приравняем
(x + 15 + 2,5√3)*5 = (2x + 5√3)*5 |:5
x + 15 + 2,5√3 = 2x + 5√3
х = 15 - 2,5√3
P = 2p = 2*(x + 15 + 2,5√3) = 2* (15 - 2,5√3 + 15 + 2,5√3) = 60 см
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.