Делаем дополнительное построение: из точки А опускаем перпендикуляр АК на продолжение стороны ВС. (АК⊥ВС). Точку D соединяем с точкой К, образовав пл-ть ADK. Докажем, что DK - расстояние от точки D до прямой ВС, то есть DK⊥ BC.
Пл-ть ADK ⊥ пл-ти АВС, так как прямая AD, принадлежащая пл-ти АDK, перпендикулярна пл-ти АВС (AD∈ ADK и AD⊥пл-ти АВС ⇒ пл-ть АDK ⊥ пл-ти ABС).
Далее. Поскольку прямая ВС ⊥ АК (линии пересечения пл-тей АВС и АDK), то она перпендикулярна пл-ти ADK.
И поскольку ВС ⊥ пл-ти ADK, то она перпендикулярна каждой прямой пл-ти ADK, проходящей через точку пересечения К. Таким образом, DK⊥BC и является расстоянием от точки D до прямой ВС. DK = 2√43, по условию.
По условию 3A+2B=180 . так как сумма углов в треугольнике равна 180 , получаем B+3C=360 и 2C-A=180 из теореме синусов AC=(BC*sinB)/sinA и AB=(BC*sinC)/sinA По теореме косинусов AB^2=BC^2+AC^2-2AC*BC*cosC , приравнивая к AB^2=BC^2+AC*AB получаем AC-AB = 2*BC*cosC подставляя AC и AB выраженные через BC, требуется доказать что sinB - sinC = 2*sinA*cosC (sinB-sinC)/(2*sinA) = cosC Подставляя углы (sin(360-3C)-sinC)/(2*sin(2C-180)) = -4*sinC*cos^2(C)/(-2*sin(2C)) = 2*sinC*cosC*cosC/(2*cosC*sinC) = cosC чтд.
DA = 5см
Объяснение:
Смотри рисунок на прикреплённом фото.
Дано, что DA ⊥ плоскости ΔАВС.
Делаем дополнительное построение: из точки А опускаем перпендикуляр АК на продолжение стороны ВС. (АК⊥ВС). Точку D соединяем с точкой К, образовав пл-ть ADK. Докажем, что DK - расстояние от точки D до прямой ВС, то есть DK⊥ BC.
Пл-ть ADK ⊥ пл-ти АВС, так как прямая AD, принадлежащая пл-ти АDK, перпендикулярна пл-ти АВС (AD∈ ADK и AD⊥пл-ти АВС ⇒ пл-ть АDK ⊥ пл-ти ABС).
Далее. Поскольку прямая ВС ⊥ АК (линии пересечения пл-тей АВС и АDK), то она перпендикулярна пл-ти ADK.
И поскольку ВС ⊥ пл-ти ADK, то она перпендикулярна каждой прямой пл-ти ADK, проходящей через точку пересечения К. Таким образом, DK⊥BC и является расстоянием от точки D до прямой ВС. DK = 2√43, по условию.
∠АВК и ∠АВС смежные углы, поэтому
∠АВК = 180° - ∠АВС = 180° - 120° = 60°.
АК = АВ·sin 60° = 14 · 0.5√3 = 7√3 (cм).
По теореме Пифагора DK² = AK² + DA², откуда
DA = √(DK² - AK²) = √(4 · 43 - 49 · 3) = √172 - 147 = √25 = 5(см)
из теореме синусов AC=(BC*sinB)/sinA и AB=(BC*sinC)/sinA
По теореме косинусов AB^2=BC^2+AC^2-2AC*BC*cosC , приравнивая к AB^2=BC^2+AC*AB получаем AC-AB = 2*BC*cosC подставляя AC и AB выраженные через BC, требуется доказать что
sinB - sinC = 2*sinA*cosC
(sinB-sinC)/(2*sinA) = cosC
Подставляя углы
(sin(360-3C)-sinC)/(2*sin(2C-180)) = -4*sinC*cos^2(C)/(-2*sin(2C)) =
2*sinC*cosC*cosC/(2*cosC*sinC) = cosC чтд.