Пусть MNPQM1N1P1Q1 - куб. Я присваиваю новые обозначения четырем вершинам M -> A; N1 -> B; P -> C; Q1 -> D; (само собой, я и про старые обозначения не забываю, просто помню, что если говорю "точка А", то это одновременно означает "точка М", и наоборот). Ясно, что ABCD - правильный тетраэдр, так как все его грани - равносторонние треугольники. Точка K является центром грани куба MM1Q1Q, точка L - центр грани куба NN1P1P, поэтому KL II PQ. Точка С1 - центр грани MM1N1N, и в задаче надо найти угол C1PQ; Если считать длину ребра куба равной 2, то C1P = √(1^2 + 2^2 + 2^) = √6; и косинус угла C1PQ = 1/√6 = √6/6;
1) Дано: прямоугольная трапеция ABCD, <B=<A=90°, AC - биссектриса=6см, <BAC=<CAD=45° Найти: S ABCD Решение: Проведём высоту СН. Из ΔАСН <ACH=180°-45°-90°=45°, ==>ΔACH - равнобедренный, Из ΔАВС <ACB=180°-45°-90°=45°, ==>ΔABC - равнобедренный, BC=AH, ==> AB=CH=BC=AH=a ==> ABCH - квадрат, тогда 6=а√2 а=3√2 Из ΔСНD tg60°= HD= S ΔCHD=1/2(3√2*√6)=1/2*6√3=3√3 S ABCH=a²=18 S ABCD=S ΔCHD+S ABCH=18+3√3 ответ: 18+3√3 2) Эту задачу невозможно решить без дополнительных условий, а именно без длины АК. Напишите длину и я напишу решение.
Я присваиваю новые обозначения четырем вершинам
M -> A; N1 -> B; P -> C; Q1 -> D;
(само собой, я и про старые обозначения не забываю, просто помню, что если говорю "точка А", то это одновременно означает "точка М", и наоборот).
Ясно, что ABCD - правильный тетраэдр, так как все его грани - равносторонние треугольники.
Точка K является центром грани куба MM1Q1Q, точка L - центр грани куба NN1P1P, поэтому KL II PQ.
Точка С1 - центр грани MM1N1N, и в задаче надо найти угол C1PQ;
Если считать длину ребра куба равной 2, то C1P = √(1^2 + 2^2 + 2^) = √6;
и косинус угла C1PQ = 1/√6 = √6/6;
Найти: S ABCD
Решение:
Проведём высоту СН.
Из ΔАСН
<ACH=180°-45°-90°=45°, ==>ΔACH - равнобедренный,
Из ΔАВС
<ACB=180°-45°-90°=45°, ==>ΔABC - равнобедренный,
BC=AH, ==> AB=CH=BC=AH=a ==>
ABCH - квадрат, тогда
6=а√2
а=3√2
Из ΔСНD
tg60°=
HD=
S ΔCHD=1/2(3√2*√6)=1/2*6√3=3√3
S ABCH=a²=18
S ABCD=S ΔCHD+S ABCH=18+3√3
ответ: 18+3√3
2) Эту задачу невозможно решить без дополнительных условий, а именно без длины АК. Напишите длину и я напишу решение.