Т.к. трапеция равнобоковая, то две высоты, проведённые из меньшего основания к большему, будут равны, параллельны, будут отсекать на большем основании три отрезка, один из которых (центральный) равен меньшему основанию, а два других равны (исходя из равенства получившихся треугольников, которые равны по катета и гипотенузе). Находим далее эти равные отрезки. Вычитаем из длины большего основания меньшее и делим на два. Получаем 4 см. Т.к. диагонали перпендикулярны сторонам, то находим высоту треугольника как среднее геометрическое. Среднее геометрическое равно корню из произведения проекций катетов, т.е. высота равна √(4*(12+4)) = √(4*16) = √64 = 8 см. Значит, высота равна 8 см.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на отрезки, из которых меньший равен полуразности оснований, больший – их полусумме. (Можно провести вторую высоту из вершины второго тупого угла и получить тот же результат)
АН=(АD-ВС):2=2 см
НD=18-2=16 см
∆ АВD - прямоугольный по условию.
АН –проекция АВ на гипотенузу, HD - проекция BD на гипотенузу.
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Т.е. квадрат высоты равен произведению отрезков, на которые она делит гипотенузу.
В трапеции АВСD проведем высоту ВН.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на отрезки, из которых меньший равен полуразности оснований, больший – их полусумме. (Можно провести вторую высоту из вершины второго тупого угла и получить тот же результат)
АН=(АD-ВС):2=2 см
НD=18-2=16 см
∆ АВD - прямоугольный по условию.
АН –проекция АВ на гипотенузу, HD - проекция BD на гипотенузу.
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Т.е. квадрат высоты равен произведению отрезков, на которые она делит гипотенузу.
ВН²=АН•НD
ВН=√(2•16)=√32
Из прямоугольного ∆ АВН по т.Пифагора
АВ=√(ВН²+АН²)=√(32+4)=6 см