Призма - правильная четырехугольная. В основании - квадрат. Диагональ наклонена к плоскости основания под углом 45°. Значит, диагональ квадрата-основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. Длина этой гипотенузы дана в условии - 4 см Пусть х - катеты этого треугольника 4=х√2 х=4:√2=4√2:(√2*√2)=2√2 Диагональ основания квадрата =2√2 Высота призмы =2√2 Основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. Радиус этой окружности равен половине стороны квадрата - основания призмы. Найдем эту сторону из формулы диагонали квадрата: d=а√2 Мы нашли d=2√2, значит сторона квадрата а=2 r= 2:2=1 Имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 Площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. S =2πr*h= 2π*2√2 см²=4π√2 см²
дан прямоугольник.
A B
Taisnsturu_skaits1.png
M H
Добавим ещё один прямоугольник так, что сторона BH обоих прямоугольников совпадает.
A B B1
Taisnsturu_skaits2.png
M H H1
Сколько прямоугольников нарисовано?
3
.
Добавим ещё один прямоугольник.
A B B1 B2
Taisnsturu_skaits3.png
M H H1 H2
Сколько прямоугольников нарисовано сейчас?
6
.
Допустим, что к данному первому прямоугольнику добавлено ещё 9 прямоугольников.
Посчитай, сколько всего прямоугольников нарисовано в этом случае.
Число прямоугольников:10
В основании - квадрат.
Диагональ наклонена к плоскости основания под углом 45°. Значит, диагональ квадрата-основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы.
Длина этой гипотенузы дана в условии - 4 см
Пусть х - катеты этого треугольника
4=х√2
х=4:√2=4√2:(√2*√2)=2√2
Диагональ основания квадрата =2√2
Высота призмы =2√2
Основание цилиндра - круг, ограниченный вписанной в квадрат окружностью.
Радиус этой окружности равен половине стороны квадрата - основания призмы.
Найдем эту сторону из формулы диагонали квадрата:
d=а√2
Мы нашли d=2√2, значит сторона квадрата а=2
r= 2:2=1
Имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения
r =1
Площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра.
S =2πr*h= 2π*2√2 см²=4π√2 см²