Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).
Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.
Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)
ΔABD = ΔDCA по трем сторонам (AD - общая, АВ = CD так как трапеция равнобедренная, BD = СA как диагонали равнобедренной трапеции) ⇒ ∠CAD = ∠BDA, тогда ΔAOD равнобедренный, прямоугольный.
Так как АС = BD и АО = OD, то и ОС = ОВ. ⇒ ΔВОС равнобедренный, прямоугольный.
Проведем высоту КН через точку пересечения диагоналей. ОК - высота и медиана равнобедренного треугольника ВОС, ОН - высота и медиана равнобедренного треугольника AOD.
ОК = ВС/2 как медиана, проведенная к гипотенузе, ОН = AD/2как медиана, проведенная к гипотенузе. ⇒ КН = (AD + BC)/2, средняя линия треугольника равна полусумме оснований, значит средняя линия равна высоте и равна 19 см.
Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).
Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.
Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)
Треугольники ABC и CBD подобны. Значит:
AD/DC = DC/BD, то есть
DC2=AD*BD
DC2=9*16
DC=12 см
⇒ ∠CAD = ∠BDA, тогда ΔAOD равнобедренный, прямоугольный.
Так как АС = BD и АО = OD, то и ОС = ОВ.
⇒ ΔВОС равнобедренный, прямоугольный.
Проведем высоту КН через точку пересечения диагоналей.
ОК - высота и медиана равнобедренного треугольника ВОС,
ОН - высота и медиана равнобедренного треугольника AOD.
ОК = ВС/2 как медиана, проведенная к гипотенузе,
ОН = AD/2как медиана, проведенная к гипотенузе.
⇒ КН = (AD + BC)/2,
средняя линия треугольника равна полусумме оснований, значит
средняя линия равна высоте и равна 19 см.