Равнобедренная трапеция АВСД: АВ=СД=10: АД=30, ВС=20. Высота трапеции ВН, опущенная на основание АД. Диагональ трапеции ВД. Формула радиуса круга, описанного около трапеции R=АД*АВ*ВД/4Sавд=2АД*АВ*ВД/4АД*ВН=АВ*ВД/2ВН. В равнобедренной трапеции высота делит большее основание на отрезки, один из которых равен полуразности оснований, второй - их полусумме, значит АН=(АД-ВС)/2=(30-20)/2=5 и НД=(30+20)/2=25 Найдем высоту ВН из прямоугольного ΔАВН: ВН²=АВ²-АН²=100-25=75 ВН=5√3 Найдем диагональ ВД из прямоугольного ΔВДН: ВД²=ВН²+НД²=75+625=700 ВД=10√7 Найдем радиус круга : R=10*10√7 / 2*5√3=10√7/√3 Площадь круга S=πR²=π*(10√7/√3)²=700π/3
AK/BK =AC/BC
|AK/BK =AC/BC
медиана ВM:
(2*BM)² +AC² =2*(AB² +BC²) ;
BM =1/2*√((2*(AB² +BC²) -AC²) = 1/2*√ (2*(13² +21²) - 20²) =1/2*√(2*(169+441) -400) = 1/2*√820=1/2*√(4*205) =1/2*2*√205 =√205 ;
BM =√205.
AK/BK =AC/BC (свойство биссектрисы)
AK/BK =20 /21; [ 20x+21x =13 ⇒x =13/41].
AK =13*20/41 =260/41;
BK = 13*21/41 =273/11 ;BK² = AC*BC - AK*BK ;
BK² =20*21 - 260/41*273/41= 29880/41² ;
BK = 6√ 249 0/41.
Потом по трем сторонам ( если конечно можно построить треугольник)
вычислить требуемую площадь по формуле Герона
Это решение "в лоб ", нужно искать нормальное
Высота трапеции ВН, опущенная на основание АД.
Диагональ трапеции ВД.
Формула радиуса круга, описанного около трапеции
R=АД*АВ*ВД/4Sавд=2АД*АВ*ВД/4АД*ВН=АВ*ВД/2ВН.
В равнобедренной трапеции высота делит большее основание на отрезки, один из которых равен полуразности оснований, второй - их полусумме, значит АН=(АД-ВС)/2=(30-20)/2=5 и НД=(30+20)/2=25
Найдем высоту ВН из прямоугольного ΔАВН:
ВН²=АВ²-АН²=100-25=75
ВН=5√3
Найдем диагональ ВД из прямоугольного ΔВДН:
ВД²=ВН²+НД²=75+625=700
ВД=10√7
Найдем радиус круга :
R=10*10√7 / 2*5√3=10√7/√3
Площадь круга S=πR²=π*(10√7/√3)²=700π/3