от точки А откладываем циркулем расстояние равное основанию . На пересечении получим точку В. Ав - основание
строим срединный перпендикуляр к отрезку АВ. Циркулем (радиус больше половины основания) проводим две окружности из точек А и В. Окружности пересекуться в двух точках. Соединяем их между собой и получим срединный перпендикуляр или высоту этого треугольника.
От точки пересечения основания АВ и срединного перпендикуляра - например О - циркулем откладываем окружность равную высоте данного треугольника. Эта окружность пересечется со срединным перпендикуляром (или высотой треугольника в какой то точке. Обозначим её С
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
строим прямую
на ней откладываем точку А
от точки А откладываем циркулем расстояние равное основанию . На пересечении получим точку В. Ав - основание
строим срединный перпендикуляр к отрезку АВ. Циркулем (радиус больше половины основания) проводим две окружности из точек А и В. Окружности пересекуться в двух точках. Соединяем их между собой и получим срединный перпендикуляр или высоту этого треугольника.
От точки пересечения основания АВ и срединного перпендикуляра - например О - циркулем откладываем окружность равную высоте данного треугольника. Эта окружность пересечется со срединным перпендикуляром (или высотой треугольника в какой то точке. Обозначим её С
Соединим точки АВС- это искомый треугольник
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см