т.к. данные прямые равны, они образуют в пространстве равнобедренный треугольник, а т.к. угол между прямыми 60 градусов, то этот треугольник не только равнобедренный, но и равносторонний, т.е. основание этого треугольника = тоже 2см
это же основание является гипотенузой прямоугольного треугольника на плоскости, образованного проекциями наклонных, этот прямоугольный треугольник тоже будет равнобедренным (его катеты равны, как проекции равных наклонных)
по т.Пифагора 2^2 = a^2 + a^2 = 2a^2
a^2 = 2
a = V2 ---катет прямоугольного треугольника на плоскости, проекция наклонной
расстояние от точки до плоскости --- перпендикуляр к плоскости, получился еще один прямоугольный треугольник, но уже в пространстве, один катет ---искомое расстояние, второй катет ---проекция наклонной, гипотенуза ---наклонная
т.к. данные прямые равны, они образуют в пространстве равнобедренный треугольник, а т.к. угол между прямыми 60 градусов, то этот треугольник не только равнобедренный, но и равносторонний, т.е. основание этого треугольника = тоже 2см
это же основание является гипотенузой прямоугольного треугольника на плоскости, образованного проекциями наклонных, этот прямоугольный треугольник тоже будет равнобедренным (его катеты равны, как проекции равных наклонных)
по т.Пифагора 2^2 = a^2 + a^2 = 2a^2
a^2 = 2
a = V2 ---катет прямоугольного треугольника на плоскости, проекция наклонной
расстояние от точки до плоскости --- перпендикуляр к плоскости, получился еще один прямоугольный треугольник, но уже в пространстве, один катет ---искомое расстояние, второй катет ---проекция наклонной, гипотенуза ---наклонная
по т.Пифагора x^2 = 2^2 - a^2 = 4-2 = 2
x = V2
Забавная задачка, мне понравилась)
Правда, сначала недопонял, но потом сообразил, что Вы опечатались: основаниуе ВC=5, ведь DС - одно из бедер!)
Давайте тогда, чтоб путаницу из-за опечатки убрать, все проговорим:
Трапеция АВСД, основания АД=2 и ВС=5, высота трапеции - она же малая диагональ - ВД. Рисуйте и - поехали!
Идея решения у меня такая: раз малая диагональ перпендикулярна основаниям, то она делит трапецию на два прямоугольных треугольника.
У каждого из них, конечно же, как полагается, сумма углов равна 180 градусам.
Ну, а сумма углов, которые непрямые, равна 90 градусов. У каждого, а у обоих-двоих вместе аж 180!
то есть можно вот что написать:
САД+АВД+ВСД+СДВ равна 90+90=180 градусов.
Условие говорит, что, что сумма углов А и С равна 90.
Из этого всего естественно, как говорится, вытекает, что сумма углов АВД и ВДС тоже равна 90 градусов!
И это - основа моего решения.)
Ибо из этого я делаю вывод о подобии треугольников АВД и ДВС! (Нужно пояснять, или удалось ясно высказаться?)
Это подобие мы используем для того, чтоб вычислить длину той самой коротокой диаганали:
Она бОльший катет треугольника АВД и мЕньший катет треугольника ДВС.
АД относится к ДВ так же, как ДВ относится к ВС.
АД и ВС известны, можно считать:
2/ДВ=ДВ/5
ДВ в квадрате=10
ДВ= квадратный корень из 10
Ну, а теперь совсем просто:
Опускаем вертикаль из С на продолжение АД. Назовем точку пересечения К.
Длинная диагональ - это гипотенуза бааальшого треугольника АСК с катетами
АК = АД + ВС = 2+5 = 7 и
СК = ВД = как посчитали, квадратному корню из 10.
Проще нету: длина АС равна корню квадратному из суммы квадратов этих катетов,. т.е. из суммы 49 и 10
АС= корню квадратному из 59.
Это 7,681 и т.д...
Число, конечно, довольно противное, но по-моему все правильно...
Ура?
Ура!))