Две окружности касаются внешним образом и имеют общую внешнюю касательную. Найдем расстояние между точками касания на прямой.
Отрезки касательных из одной точки равны (синие отрезки). Центры окружностей лежат на биссектрисах углов, образованных касательными. Угол между биссектрисами смежных углов - прямой. Точка касания окружностей лежит на линии центров. Радиусы, проведенные в точку касания, перпендикулярны касательной. Таким образом синий отрезок является высотой из прямого угла и равен среднему пропорциональному проекций катетов, √(R1*R2).
Расстояние между точками касания на прямой равно 2√(R1*R2).
ъясните. (1б) в) Как расположена по отношению к плоскости прямая , параллельная прямой 11? ответ обоснуйте. (1б) 6. Плоскость проходит через основание трапеции . Точки и – середины боковых сторон трапеции . а) Докажите, что прямая параллельна плоскости . (1б) б) Найдите , если = 4, = 6. (1б) 7. Параллелограммы и 11 не лежат в одной плоскости. Докажите параллельность плоскостей 1 и 1. ( 2б) 8. Дан тетраэдр . ∈ , ∈ , ∈ . а) Постройте точку пересечения с плоскостью . (1б) б) Постройте линию пересечения плоскости и плоскости . (1б) 9. Концы двух равных перпендикулярных отрезков и лежат на двух параллельных плоскостях. а) При каком дополнительном условии пересечения отрезков является квадратом? (2б) б) Докажите, что если не является квадратом, то - трапеция, в которой высота равна средней линии. (2б) 10. Дан куб 1111.Точка - середина ребра 11. Найдите косинус угла между прямыми и 1. (5б)
Две окружности касаются внешним образом и имеют общую внешнюю касательную. Найдем расстояние между точками касания на прямой.
Отрезки касательных из одной точки равны (синие отрезки). Центры окружностей лежат на биссектрисах углов, образованных касательными. Угол между биссектрисами смежных углов - прямой. Точка касания окружностей лежит на линии центров. Радиусы, проведенные в точку касания, перпендикулярны касательной. Таким образом синий отрезок является высотой из прямого угла и равен среднему пропорциональному проекций катетов, √(R1*R2).
Расстояние между точками касания на прямой равно 2√(R1*R2).
В задаче три пары аналогичных окружностей.
AB+BC=AC => 2√(x*25/16) +2√(9*25/16) =2√(9x) <=> 7√x =15 <=> x=225/49
в) Как расположена по отношению к плоскости прямая , параллельная прямой
11? ответ обоснуйте. (1б)
6. Плоскость проходит через основание трапеции . Точки и – середины
боковых сторон трапеции .
а) Докажите, что прямая параллельна плоскости . (1б)
б) Найдите , если = 4, = 6. (1б)
7. Параллелограммы и 11 не лежат в одной плоскости. Докажите
параллельность плоскостей 1 и 1.
( 2б)
8. Дан тетраэдр . ∈ , ∈ , ∈ .
а) Постройте точку пересечения с плоскостью . (1б)
б) Постройте линию пересечения плоскости и плоскости . (1б)
9. Концы двух равных перпендикулярных отрезков и лежат на двух параллельных
плоскостях. а) При каком дополнительном условии пересечения
отрезков является квадратом? (2б) б)
Докажите, что если не является квадратом, то - трапеция, в которой высота
равна средней линии. (2б)
10. Дан куб 1111.Точка - середина ребра 11. Найдите косинус угла между
прямыми и 1. (5б)