В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
krizhnaya111
krizhnaya111
28.03.2020 19:55 •  Геометрия

Дано: треугольник ABC угол C равен 90 градусов угол b равен 60 градусов BC равен 12 см CN высота найти длинный отрезков AN и НАДО.​

Показать ответ
Ответ:
slivinskaja83
slivinskaja83
17.07.2020 08:58

Пусть A' – середина дуги BC. Так как OA' || IA2, прямые OI и A'A2 пересекаются в точке K – центре гомотетии описанной и вписанной окружностей (см. рис.). Докажем, что K – искомый радикальный центр.

Первый Так как инверсия с центром A' и радиусом A'B меняет местами прямую BC и описанную окружность Ω треугольника ABC, точка A1 переходит в A, а A2 – в точку A'' пересечения прямой A'A2 с описанной окружностью. Следовательно, точки A, A1, A2 и A'' лежат на одной окружности.

Степень точки K относительно описанной окружности треугольника AA1A2 равна – KA2·KA'' = – r/R AA'·KA'' = r/R s(K), где s(K) – степень точки K относительно Ω.

Очевидно, степени точки K относительно описанных окружностей треугольников BB1B2 и CC1C2 будут такими же, то есть K – радикальный центр трёх окружностей.

Второй Пусть A', B', C' – середины дуг BC, CA, AB. Тогда треугольник A'B'C' переводится в A2B2C2 гомотетией с коэффициентом r/R и центром K, то есть KA2 : A'A2 = KB2 : B'B2 = KC2 : C'C2 = k : 1. Для точек прямой A'A2 разность степеней относительно описанной окружности треугольника AA1A2 и вписанной окружности треугольника ABC является линейной функцией. В точке A2 эта функция равна нулю,

а в точке A' – r², поскольку A'A1·A'A = A'B² = A'I² (первое равенсто следует из подобия треугольников A'A1B и A'BA, а второе – из леммы о трезубце – см. задачу 53119). Значит, в точке K эта разность равна – kr². Другие аналогичные разности в точке K также равны – kr², откуда и следует требуемое

0,0(0 оценок)
Ответ:
mipad0302
mipad0302
14.10.2021 04:05

ответ

120°

Объяснение:

Решение

 Пусть  ∠ABD = ∠ADB = α, ∠BAC = ∠ACB = β.  По теореме о внешнем угле треугольника  ∠BMC = α + β.

 Через точку A проведём прямую, параллельную стороне CD. Пусть эта прямая пересекается с прямой DB в точке K. Треугольник AMK равнобедренный, так как он подобен равнобедренному треугольнику CMD. Значит,  ∠DK = DM + MK = CM + MA = CA,  то есть трапеция AKCD – равнобедренная. Поэтому  CK = AD = BC,  то есть треугольник BCK также равнобедренный (по условию точка K не совпадает с точкой B). Кроме того,

∠KCM = ∠ADM = α.  Рассмотрим два случая.

 1) Точка K лежит на диагонали DB. Тогда ∠KBC = ∠BKC = ∠KMC + ∠KCM = 2α + β.  Отсюда

180° = ∠BMC + ∠MBC + ∠MCB = (α + β) + (2α + β) + β = 3α + 3β.

 2) Точка лежит на продолжении DB за точку B. Тогда  ∠BKC = ∠KBC = ∠BMC + ∠BCM = α + 2β.  Отсюда

180° = ∠KMC + ∠MK + ∠KCM = (α + β) + (α + 2β) + α = 3α + 3β.

 Итак, в любом случае  α + β = 60°.  Следовательно,  ∠CMD = 180° – ∠KMC = 180° – (α + β) = 120°.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота