В равнобедренном тр-ке высота, проведенная к основанию, является и биссектрисой, и медианой. Значит по Пифагору боковая сторона равна √(64+36) = 10см. Косинус угла равен отношению прилежащего катета (высота нашего треугольника) к гипотенузе (боковая сторона), то есть Cosα = 8/10 = 0,8. Отсюда α = 36° (по таблице). Значит угол, противоположный основанию нашего треугольника равен 72°, а его косинус (опять же по таблице) равен 0,31. По теореме косинусов квадрат стороны треугольника равен сумме квадратов двух его других сторон минус удвоенное произведение этих сторон на косинус угла между ними. Значит увадрат искомой медианы равен: 100+25-30*0,31 = 125 - 9,3 =116,7. Тогда медиана равна 10,76см.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
= 10см. Косинус угла равен отношению прилежащего катета (высота нашего треугольника) к гипотенузе (боковая сторона), то есть Cosα = 8/10 = 0,8. Отсюда
α = 36° (по таблице). Значит угол, противоположный основанию нашего треугольника равен 72°, а его косинус (опять же по таблице) равен 0,31.
По теореме косинусов квадрат стороны треугольника равен сумме квадратов двух его других сторон минус удвоенное произведение этих сторон на косинус угла между ними. Значит увадрат искомой медианы равен: 100+25-30*0,31 =
125 - 9,3 =116,7.
Тогда медиана равна 10,76см.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).