Пусть длина равна a, ширина b. Площадь ab=3600, периметр 2(a+b), нужно найти минимум периметра, то есть минимум функции p=2(a+b). Из формулы для площади выражаем a=3600/b и подставляем в формулу для периметра p=2(a+b), получаем p=2((3600/b)+b)=(7200/b)+2b, находим производную (производная суммы двух слагаемых) и приравниваем её к нулю (ибо нам нужен минимум): dp/db=(-7200/(b^2))+2, решаем уравнение, получаем (b-60)(b+60)=0, два корня: b=60 или b=-60, второй не подходит, длина всегда неотрицательна, первый подходит, его подставляем в формулу для а, получаем а=60, ответ: (60м) х (60м).
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Пусть длина равна a, ширина b. Площадь ab=3600, периметр 2(a+b), нужно найти минимум периметра, то есть минимум функции p=2(a+b). Из формулы для площади выражаем a=3600/b и подставляем в формулу для периметра p=2(a+b), получаем p=2((3600/b)+b)=(7200/b)+2b, находим производную (производная суммы двух слагаемых) и приравниваем её к нулю (ибо нам нужен минимум): dp/db=(-7200/(b^2))+2, решаем уравнение, получаем (b-60)(b+60)=0, два корня: b=60 или b=-60, второй не подходит, длина всегда неотрицательна, первый подходит, его подставляем в формулу для а, получаем а=60, ответ: (60м) х (60м).
Объяснение:
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²