Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
EF - средняя линия
EO = 3 см
OF = 4 см
Найти: AB
Решение.
1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам.
2) Рассмотрим треугольники EOD и ABD.
Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD.
Угол DBC общий. Следовательно, треугольник BOF подобен BDC.
3) Из подобия треугольников следует, что
AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
4) ад=60/5*2=24
4) l adb = 30 град. > в треугольнике abd угол l a = 90 - 30 = 60 град.
l adb = l bdc = 30 град. > l d = l adb + l bdc = 30 + 30 = 60 град. =>
ab = cd > трапеция равнобедренная
bk и cm - перпендикуляры к ad > ak = md
треугольник abk:
l abk = 90 град.; l a = 60 град. и l abk = 30 град. => если
ak = x > ab = 2x (аналогично в треугольнике mcd: md = x и cd = 2x)
в трапеции abcd:
bk _|_ ad > l kbc = 90 град.
l kbd = 90 - l kdb = 90 - 30 = 60 град. =>
l cbd = l kbc - l kbd = 90 - 60 = 30 град. =>
в треугольнике bcd, так как l cbd = l cdb = 30 град. > bc = cd = x
=> в трапеции abcd:
ab = cd = 2x
ak = md = x
km = bc = cd = x =>
ad = ak + km + md = x + 2x + x = 4x
bc = 2x =>
p = ab + bc + cd + ad = 2x + 2x + 2x + 4x = 60 > 10x = 60 > x = 6
=>
ab = bc = cd = 2x = 2*6 = 12
ad = 4x = 4*6 = 24