Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
7 задание.
дано :
треугольник р/б.
Р=20см
АС=4см
найти :
сторону АВ
т.к ВС - высота (угол при прямой D)
и медиана АС=СD
1)4см+4см=8см основание
АВ=ВD, т.к треугольник р/б (равнобедренный)
2)20см-8см=12см сумма равных сторон
3) 12см:2=6см равные стороны
ответ : АВ = 6см
8 задание.
дано :
треугольник р/б
Р=32см
АВ-DC=4см
найти : ВС
тут можно решить уравнением
возьмем DC за х
(х+4)+(х+4)+2х=32
(объясняю:
х+4
чтоб найти DC надо к DC прибавить 4 в результате чего получается АВ
2х
это 2 × х, т.к мы взяли DC за х
х+4+2х это сумма половины основания и одной стороны, по этому дублируем, то есть получается
(х+4)+(х+4)+2х=32
32 это периметр)
решаем уравнение
1) (х+4)+(х+4)+2х=32
2х+8+2х=32
4х=24
х=24:4
х=6 это мы нашли DC
2) DC=AD, т.к DB биссектриса
6+6=12 основание
3) периметр - основание = сумма сторон
Ртреугольника-АС= АВ+ВС
32-12=20 сумма сторон АВ+ВС
4) АВ=ВС
20:2=10 AB и BC
ответ : ВС =10см
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.