Дано : треугольник ABC и треугольник HKP, AB = HK, AC = HP, угол LA = углу L
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.
Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.