Дано трикутник abc зі сторонами 10, 17 і 21 см. з деякої точки до площини трикутника проведено перпенликуляр ро, який дорівнює 60 см. знайти відстань від точки р до вершини трикутника.
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
75 см²
Объяснение:
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
S ABC = 1/2AC*BH=7,5*10=75 см²
ответ:Сумма смежных углов равна 180 градусов
Номер 1
а)<1=Х
<2=2Х
Х+2Х=180
3Х=180
Х=180:3
Х=60
<1=60 градусов
<2=60•2=120 градусов
б)<1=1
<2=0,8
1+0,8=1,8 частей
Одна часть равна
180:1,8=100
<1=100 градусов
<2=100•0,8=80 градусов
Номер 2
При пересечении двух прямых получается две пары вертикальных углов,противоположные углы равны между собой
а)<1=<3=21 градус,как вертикальные
<2=<4=(360-21•2):2=(360-42):2=
318:2=159 градусов,как вертикальные
б)Узнаём,чему равен 4 угол
360-325=35 градусов,тогда
<1=<3=35 градусов,как вертикальные
<2=<4=(360-35•2):2=(360-70):2=
290:2=145 градусов,как вертикальные
Объяснение: