Пусть О1, О2 и О3 - центры данных нам окружностей, точки А, В и С - точки их касания. Тогда О1А=О1С=2, О2А=О2В=3, О3В=О3С=4. Значит стороны треугольника О1О2О3 равны:5,6 и 7. Тогда площадь этого треугольника по Герону равна: S=√[p*(p-a)(p-b)(p-c)], где р - полупериметр, а,b,с - стороны треугольника. р=(5+6+7)/2=9. S=√(9*4*3*2)=6√6. Заметим, что окружность, описанная вокруг треугольника АВС - это вписанная в треугольник О1О2О3 окружность, так как точки А, В и С окружности принадлежат сторонам О1О2,О2О3 и О3О1 соответственно. Докажем это. Есть формула нахождения длины отрезка от вершины треугольника до точки касания с вписанной окружностью: расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 или d=р-с, где р - полупериметр, с - сторона, противоположная углу треугольника. В нашем случае: О1А=9-7=2, О2А=9-6=3, О3В=9-5=4, следовательно, точки касания вписанной в треугольник АВС окружности совпадают с точками А, В и С касания данных нам окружностей. Радиус вписанной в треугольник окружности равен r=S/p или в нашем случае r=6√6/9=2√6/3. ответ: r=2√6/3.
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Значит стороны треугольника О1О2О3 равны:5,6 и 7.
Тогда площадь этого треугольника по Герону равна:
S=√[p*(p-a)(p-b)(p-c)], где р - полупериметр, а,b,с - стороны треугольника.
р=(5+6+7)/2=9. S=√(9*4*3*2)=6√6.
Заметим, что окружность, описанная вокруг треугольника АВС - это вписанная в треугольник О1О2О3 окружность, так как точки А, В и С окружности принадлежат сторонам О1О2,О2О3 и О3О1 соответственно.
Докажем это. Есть формула нахождения длины отрезка от вершины треугольника до точки касания с вписанной окружностью: расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 или d=р-с, где р - полупериметр, с - сторона, противоположная углу треугольника.
В нашем случае: О1А=9-7=2, О2А=9-6=3, О3В=9-5=4, следовательно, точки касания вписанной в треугольник АВС окружности совпадают с точками А, В и С касания данных нам окружностей.
Радиус вписанной в треугольник окружности равен r=S/p или в нашем случае
r=6√6/9=2√6/3.
ответ: r=2√6/3.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.