Дано трикутник АВС. Площина α, паралельна прямій АВ, перетинає сторону АС в точці К, а сторону ВС – у точці М. Знайдіть АС, якщо КС=3см, АВ=12см, КМ=4см ть)
Откройте файл в отдельном окошке и читайте мои аннотации: 1) Чертим и отмечаем то, что нам известно 2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB. 3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B. Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB. 4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания. 5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB. 6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем. 7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.) Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный. По теореме Пифагора находим их. 8) Записываем ответ.
Дано: δ авс∠с = 90°ак - биссектр.ак = 18 смкм = 9 смнайти: ∠акврешение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120°
1) Чертим и отмечаем то, что нам известно
2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB.
3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B.
Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB.
4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания.
5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB.
6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем.
7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.)
Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный.
По теореме Пифагора находим их.
8) Записываем ответ.
Надеюсь, что доступно и понятно.