Можно сообразить. Есть теорема, утверждающая, что если соединить все соседние середины сторон четырехугольника, то получится параллелограмм. Получим: средние линии перпендикулярны тогда и только тогда, когда там ромб. Это бывает тогда и только тогда, когда равны соседние стороны. А это равносильно равенству диагоналей (т. к. они вдвое больше по свойству средней линии треугольника) . Вот такое доказательство, по крайней мере, для выпуклого четырехугольника. Для невыпуклого, если надо, можно привести аналогичные рассуждения.
Обозначим вершины трапеции АВСД. Из вершины С тупого угла трапеции опустим высоту СН на АД. АВСН - прямоугольник ( т.к. трапеция прямоугольная). ВС=АН, АВ=СН. Площадь трапеции равна произведению её высоты на полусумму оснований. S АВСД=СН*(АД+ВС):2 Пусть коэффициент отношения боковых сторон равен х. Тогда АВ=4х, СД=5х. СН=АВ=4х. Из прямоугольного треугольника СНД НД²=СД²-СН² 18=√(25х²-16х²)=3х х=НД:3=18:3=6 см АВ=4х=4*6=24 см АН=√(АС²-СН²)=10 см ВС=АН=10 см АД=10+18=28 см S АВСД=СН*(АД+ВС):2 S АВСД=24*(28+10):2=456 см²
Из вершины С тупого угла трапеции опустим высоту СН на АД.
АВСН - прямоугольник ( т.к. трапеция прямоугольная).
ВС=АН,
АВ=СН.
Площадь трапеции равна произведению её высоты на полусумму оснований.
S АВСД=СН*(АД+ВС):2
Пусть коэффициент отношения боковых сторон равен х.
Тогда
АВ=4х,
СД=5х.
СН=АВ=4х.
Из прямоугольного треугольника СНД
НД²=СД²-СН²
18=√(25х²-16х²)=3х
х=НД:3=18:3=6 см
АВ=4х=4*6=24 см
АН=√(АС²-СН²)=10 см
ВС=АН=10 см
АД=10+18=28 см
S АВСД=СН*(АД+ВС):2
S АВСД=24*(28+10):2=456 см²