В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bogdan2041
bogdan2041
12.11.2022 03:43 •  Геометрия

Дано: трикутник авс, вd-висотавс=b см, кут а=30°, кут свd=45°знайти: ас​

Показать ответ
Ответ:
valikotura
valikotura
27.11.2022 03:20
Рассмотрим ∆RQC и ∆PQC.
RC = QR = QP = CP
CQ - общая сторона.
Значит, ∆RQC = ∆PQC - по III признаку.
Из равенства треугольников => ∠RQC = ∠PQC и ∠RCO = ∠PCO
Рассмотрим ∆ROQ и ∆POQ
∠RQC = ∠PQC
RQ = PQ
OQ - общая сторона
Значит, ∆ROQ = ∆POQ - по I признаку.
Из равенства треугольников => ∠QRO = ∠QPO.
Рассмотрим ∆RCO и ∆PCO.
RC = CP
CO - общая сторона
∠RCO = ∠PCO
Значит, ∆RCO = ∆PCO - по I признаку.
Из равенства треугольников => ∠CRP = ∠CPR.
∠ARQ = 180° - ∠QRP - ∠CRP.
∠BPQ = 180° - ∠RPQ - ∠CPR.
∠QPR = ∠RPQ.
∠CEP = ∠CPR.
Значит, ∠ARQ = ∠BPQ
Рассмотрим ∆ARQ и ∆BPQ.
∠ARQ = ∠BPQ
∠AQR = ∠BQR
RQ = QP
Значит, ∆ARA = ∆BPQ - по II признаку.
Из равенства треугольников => BP = AR.
0,0(0 оценок)
Ответ:
nastyagrigorov
nastyagrigorov
15.11.2021 18:44
Доказательство 1.

Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности. Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.

Доказательство 2.

Этот метод сочетает в себе алгебру и геометрию и может рассматриваться как вариант древнеиндийского доказательства математика Бхаскари.

Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b). В каждом из квадратов выполните построения, как на рисунках 2 и 3.

В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b.

Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c.

Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b).

Записав все это, имеем: a2+b2=(a+b)2 – 4*1/2*a*b. Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a2+b2= a2+b2. При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c2. Т.е. a2+b2=c2 – вы доказали теорему Пифагора.  Доказательство 3.

Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с. Катеты треугольника назовем а и b. В соответствии с чертежом сторона внутреннего квадрата это (a-b).

Используйте формулу площади квадрата S=c2, чтобы вычислить площадь внешнего квадрата. И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b)22+4*1\2*a*b.

Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c2=(a-b)2+4*1\2*a*b. В результате решения вы получите формулу теоремы Пифагора c2=a2+b2. Теорема доказана.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота