Векторы для удобства можно как бы переворачивать, например дано - ДА ( минус ДА ), но можно его поменять на + АД ( плюс АД ) , это одно и то же. К тому же векторы можно складывать в таеом порядке, как тебе удобно, а не только так, как сказано в условии. Нам дано ДВ - ДА + ВС , но мы поменяем по своему ( - ДА поменяем на + АД, и ещё переставим их местами, так, чтобы они легко складывались) получаемАД + ДВ + ВС = АС ( АД + ДВ = АВ, теперь АВ + ВС = АС) . Теперь найдем длину АС , в прямоугольнике это диагональ. Длину искать по т Пифагора. Сторона АВ = 9, ВС = 40 , это катеты, АС гипотенуза. 9 в квадр + 40 в квадр = 1681, выводим 1681 из квадрата = 41. ответ АС = 41 см.
1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.