Я рассмотрю треугольник у которого боковые есть :AB, BC Пусть в треугольнике ABC AB=a, BC=b. причем a не равно b опустим медиану BH и предположим что она высота т.к. BH-медиана, то AH=HC=x т.к BH-высота, то треугольники ABH и BHC -прямоугольные, а боковые стороны ABC - их соответственные гипотенузы. тогда по теореме пифагора для ABH, x^2=a^2-h^2, где h-высота и медиана. в треугольнике BHC по теор. пифагора x^2=b^2-h^2 т.к. x^2=x^2 то a^2-h^2=b^2-h^2 откуда a^2=b^2 значит a=b что противоречит условию, следовательно медиана в таком трекгольнике не является высотой
Приближается Новый год. 2012 год по восточному календарю — год дракона. В связи с этим моя давняя хорошая подруга и однокурсница преложила написать об этом фрактале — кривой дракона.
Кривая дракона — это кривая без самопересечений, которая определяется рекурсивно. Описать эту кривую можно, задавая поворот налево цифрой

, а поворот направо — цифрой

. Важно, что все повороты совершаются на один и тот же угол! Таким образом, задавая значение

или

на каждом шаге, мы можем задать кривую.
Порядком кривой дракона называется количество звеньев получающейся ломаной. Кривая первого порядка определяется просто как

. Для кривых более высоких порядков справа приписываем
Пусть в треугольнике ABC AB=a, BC=b. причем a не равно b
опустим медиану BH и предположим что она высота
т.к. BH-медиана, то AH=HC=x
т.к BH-высота, то треугольники ABH и BHC -прямоугольные, а боковые стороны ABC - их соответственные гипотенузы.
тогда по теореме пифагора для ABH, x^2=a^2-h^2, где h-высота и медиана.
в треугольнике BHC по теор. пифагора x^2=b^2-h^2
т.к. x^2=x^2
то
a^2-h^2=b^2-h^2
откуда
a^2=b^2
значит
a=b
что противоречит условию, следовательно медиана в таком трекгольнике не является высотой
Кривая дракона — это кривая без самопересечений, которая определяется рекурсивно. Описать эту кривую можно, задавая поворот налево цифрой

, а поворот направо — цифрой

. Важно, что все повороты совершаются на один и тот же угол! Таким образом, задавая значение

или

на каждом шаге, мы можем задать кривую.
Порядком кривой дракона называется количество звеньев получающейся ломаной. Кривая первого порядка определяется просто как

. Для кривых более высоких порядков справа приписываем