Проведем высоту ромба АН.М - точка пересечения этой высоты с диагональю DB. <АМВ=<KDB (как соответственные при параллельных прямых КD и АН и секущей DB. <AMB=<DMH как вертикальные. Следовательно, нам надо найти синус угла DMH в прямоугольном треугольнике DHM. Диагональ ромба делит его углы пополам. Пусть <MDH=α. Тогда острый угол ромба равен 2α. Нам дано, что Sin2α=0,6. Sin2α=2SinαCosα. SinαCosα=0,3. Sin²αCos²α=0,09. Cos²α=1-Sin²α. Sin²α(1-Sin²α)=0,09. Пусть Sin²α=Х. Тогда Х²-Х+0,09=0. Находим корни этого квадратного уравнения: D=√(1-4*0,09)=0,8 Х1=(1+0,8)/2=0,9. Х2=(1-0,8)/2=0,1. Итак,имеем два корня: Sin²α=0,9 и Sin²α=0,1. Тогда 1)Sinα=√0,9 ≈ 0,949; 2)Sinα=√0,1 ≈ 0,316. Вспомним, что за угол α мы приняли ПОЛОВИНУ острого угла ромба. Значит первый корень нам не подходит, так как arcsin(0,949) ≈ 71°. Итак, нас удовлетворяет ответ Sinα=√0,1. В прямоугольном треугольнике DMH: Sinα=МH/DМ=Cosβ. Значит Cosβ=Sinα=√0,1. Тогда Sinβ=√(1-Cosβ²)=√0,9 ответ: Sinβ=0,9.
9)
∠BAD=∠EBA=25° (как внутренние накрест лежащие углы при AD//BE и секущей AB).
∠ACD=180°-∠BAD-∠CDA=180°-25°-43°=112°
∠DCB=180°-∠ACD=180°-112°=68°
ответ: ∠DCB=68°.
10)
∠ADE+∠ADC=180° (т.к. смежные)
∠ADC=180°-∠ADE=180°-130°=50°
∠ADC+∠BAD=180° (как внутренние односторонние углы при CE//BA и секущей AD)
∠BAC=∠CAD=(180°-∠ADC)/2=(180°-50°)/2=65°
∠ACD=180°-∠CAD-∠ADC=180°-65°-50°=65°
ответ: ∠ACD=65°.
11)
∠TFR=∠FRP=30° (как внутренние накрест лежащие углы при TF//RP и секущей FR).
ΔRFP-равнобедренный ⇒ ∠FRP=∠RPF=30°.
∠SFT=180°-∠TFR-∠RFP=180°-30°-(180°-∠FRP-∠RPF)=
=180°-30°-(180°-30°-30°)=
=180°-30°-120°=30°
ответ: ∠RPF=30°; ∠SFT=30°.
12)
ΔMEN-равнобедренный ⇒ ∠EMN=∠ENM=37°
∠ENM=∠KNE=37°
ΔEFN-равнобедренный ⇒ ∠FNE=∠FEN=37°
∠NFE=180°-∠FNE-∠FEN=180°-37°-37°=106°
∠KFE=180°-∠NFE=180°-106°=74°
ответ: ∠KFE=74°.
<АМВ=<KDB (как соответственные при параллельных прямых КD и АН и секущей DB.
<AMB=<DMH как вертикальные.
Следовательно, нам надо найти синус угла DMH в прямоугольном треугольнике DHM.
Диагональ ромба делит его углы пополам. Пусть <MDH=α. Тогда острый угол ромба равен 2α. Нам дано, что Sin2α=0,6.
Sin2α=2SinαCosα. SinαCosα=0,3. Sin²αCos²α=0,09.
Cos²α=1-Sin²α. Sin²α(1-Sin²α)=0,09. Пусть Sin²α=Х. Тогда
Х²-Х+0,09=0. Находим корни этого квадратного уравнения:
D=√(1-4*0,09)=0,8 Х1=(1+0,8)/2=0,9. Х2=(1-0,8)/2=0,1.
Итак,имеем два корня: Sin²α=0,9 и Sin²α=0,1.
Тогда 1)Sinα=√0,9 ≈ 0,949; 2)Sinα=√0,1 ≈ 0,316.
Вспомним, что за угол α мы приняли ПОЛОВИНУ острого угла
ромба.
Значит первый корень нам не подходит, так как arcsin(0,949) ≈ 71°.
Итак, нас удовлетворяет ответ Sinα=√0,1.
В прямоугольном треугольнике DMH: Sinα=МH/DМ=Cosβ.
Значит Cosβ=Sinα=√0,1. Тогда Sinβ=√(1-Cosβ²)=√0,9
ответ: Sinβ=0,9.