Дано: верхнее основание трапеции ВС = 12 левая боковая сторона АВ = 36 Правая боковая сторона СД = 39 ДМ - биссектириса и АМ = ВМ = 18 Найти: Sтрап Решение: Дополнительное построение: через точку М, середину стороны АВ проводим параллельно основаниям среднюю линию трапеции МК: СК = КД = 19,5 В ΔМКД угол КМД = углу МДА (накрест лежащие при параллельных МК и АД и секущей МД). Но угол МДА = углу КДМ, т.к. МД - биссектриса. Таким образом, в ΔМКД два угла равны: угол КМД = углу КДМ, и ΔМКД -равнобедренный сравными сторонами МК = КД = 19,5. Зная среднюю линию МК = 19,5 и верхнее основание СД = 12 можно вычислить нижнее основание АД МК = (СД + АД)/2 19,5 = (12 + АД)/2 АД = 27 Сделаем ещё одно дополнительное построение из вершин В и С трапеции опустим высоты СН = ВЕ = h на нижнее основание АД. Нижнее основание АД будет разделено на три отрезка ДН = х, ЕН = 12 и АЕ = 27 - 12 - х = 15 - х Из ΔСНД выразим высоту СН=h СН² = CД² - ДН² или h² = 39² - х² Из ΔАВЕ выразим высоту ВЕ = h ВЕ² = АВ² - АЕ² или Таким образом, в ΔМКД два угла равны: угол КМД = углу КДМ, и ΔМКД -равнобедренный сравными сторонами МК = КД = 19,5. Зная среднюю линию МК = 19,5 и верхнее основание СД = 12 можно вычислить нижнее основание АД МК = (СД + АД)/2 19,5 = (12 + АД)/2 АД = 27 Сделаем ещё одно дополнительное построение из вершин В и С трапеции опустим высоты СН = ВЕ = h на нижнее основание АД. Нижнее основание АД будет разделено на три отрезка ДН = х, ЕН = 12 и АЕ = 27 - 12 - х = 15 - х Из ΔСНД выразим высоту СН = h СН² = CД² - ДН² или h² = 39² - х² Из ΔАВЕ выразим высоту ВЕ = h ВЕ² = АВ² - АЕ² или h² = 36² - (15 - х)² Приравняем квадраты высот 39² - х² = 36² - (15 - х)² 1521 - х² = 1296 - 225 + 30х - х² 30х = 450 х = 15 Итак высота трапеции из выражения h² = 39² - х² равна h = √(1521 - 225) = √1296 = 36 Площадь трапеции S = МК·h = 19.5 · 36 = 702
Прямая BD пересекает описанную окружность в точке К, а прямая АО - в точке Е. Т.к. АО-радиус окружности, значит АЕ - ее диаметр. ВК- хорда окружности. По условию ВД перпендикулярна АО, значит и ВК перпендикулярна AЕ. Диаметр, перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Значит, точка A — середина дуги КАВ, дуга КА равна дуге ВА. Вписанные углы, опирающиеся на равные дуги, равны, следовательно ∠АСВ=∠АВК=∠АВД. Получается у треугольников ABD и ACB два угла равны (∠А-общий), значит треугольники подобны по двум углам. Следовательно, АД/АВ=АВ/АС. АД=АВ²/АС=36²/48=27. Значит СД=АС-АД=48-27=21.
верхнее основание трапеции ВС = 12
левая боковая сторона АВ = 36
Правая боковая сторона СД = 39
ДМ - биссектириса и АМ = ВМ = 18
Найти: Sтрап
Решение:
Дополнительное построение: через точку М, середину стороны АВ проводим параллельно основаниям среднюю линию трапеции МК: СК = КД = 19,5
В ΔМКД угол КМД = углу МДА (накрест лежащие при параллельных МК и АД и секущей МД). Но угол МДА = углу КДМ, т.к. МД - биссектриса.
Таким образом, в ΔМКД два угла равны: угол КМД = углу КДМ, и ΔМКД -равнобедренный сравными сторонами МК = КД = 19,5.
Зная среднюю линию МК = 19,5 и верхнее основание СД = 12 можно вычислить нижнее основание АД
МК = (СД + АД)/2
19,5 = (12 + АД)/2
АД = 27
Сделаем ещё одно дополнительное построение из вершин В и С трапеции опустим высоты СН = ВЕ = h на нижнее основание АД.
Нижнее основание АД будет разделено на три отрезка ДН = х, ЕН = 12 и АЕ = 27 - 12 - х = 15 - х
Из ΔСНД выразим высоту СН=h
СН² = CД² - ДН² или h² = 39² - х²
Из ΔАВЕ выразим высоту ВЕ = h
ВЕ² = АВ² - АЕ² или Таким образом, в ΔМКД два угла равны: угол КМД = углу КДМ, и ΔМКД -равнобедренный сравными сторонами МК = КД = 19,5.
Зная среднюю линию МК = 19,5 и верхнее основание СД = 12 можно вычислить нижнее основание АД
МК = (СД + АД)/2
19,5 = (12 + АД)/2
АД = 27
Сделаем ещё одно дополнительное построение из вершин В и С трапеции опустим высоты СН = ВЕ = h на нижнее основание АД.
Нижнее основание АД будет разделено на три отрезка ДН = х, ЕН = 12 и АЕ = 27 - 12 - х = 15 - х
Из ΔСНД выразим высоту СН = h
СН² = CД² - ДН² или h² = 39² - х²
Из ΔАВЕ выразим высоту ВЕ = h
ВЕ² = АВ² - АЕ² или h² = 36² - (15 - х)²
Приравняем квадраты высот
39² - х² = 36² - (15 - х)²
1521 - х² = 1296 - 225 + 30х - х²
30х = 450
х = 15
Итак высота трапеции из выражения h² = 39² - х² равна
h = √(1521 - 225) = √1296 = 36
Площадь трапеции S = МК·h = 19.5 · 36 = 702
а прямая АО - в точке Е.
Т.к. АО-радиус окружности, значит АЕ - ее диаметр.
ВК- хорда окружности. По условию ВД перпендикулярна АО, значит и ВК перпендикулярна AЕ. Диаметр, перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам.
Значит, точка A — середина дуги КАВ, дуга КА равна дуге ВА.
Вписанные углы, опирающиеся на равные дуги, равны, следовательно ∠АСВ=∠АВК=∠АВД. Получается у треугольников ABD и ACB два угла равны (∠А-общий), значит треугольники подобны по двум углам. Следовательно, АД/АВ=АВ/АС. АД=АВ²/АС=36²/48=27. Значит СД=АС-АД=48-27=21.