1). Сторона квадрата описанного около окружности равна диагонали квадрата вписанного в эту окружность. По т. Пифагора найдем длину диагонали - √(4²+4²)=4√2 см. Площадь квадрата - (4√2)²=32 см². 2). Площадь искомого треугольника получается при вычитании площади прямоугольника описанного вокруг него и трех прямоугольных треугольников. S(прям)=3*6=18 ед²; S(тр)1=3*2/2=3 ед²; S(тр)2=4*2/2=4 ед²; S(тр)3=1*6/2=3 ед²; S(тр)=18-3-4-3=8 ед²;
2). Площадь искомого треугольника получается при вычитании площади прямоугольника описанного вокруг него и трех прямоугольных треугольников.
S(прям)=3*6=18 ед²;
S(тр)1=3*2/2=3 ед²;
S(тр)2=4*2/2=4 ед²;
S(тр)3=1*6/2=3 ед²;
S(тр)=18-3-4-3=8 ед²;
4) ∪MD=L/360*90=2piR/4=piR/2=6.5pi
R/2=6.5; R=13
S(ABCD)=AD*OM=2R*R=2R^2=2*13^2=338 кв.см
3) (рисунок снизу)
S=πRl+πR², ( l образующая)
Sполн.пов.=πR*(l+R)
1. сечение конуса - равнобедренный прямоугольный треугольник: гипотенуза - хорда х=6, катеты - образующие конуса l.
по теореме Пифагора:
x²=l²+l², 6²=l²+l², l²=18, l=3√2
2. осевое сечение конуса - равнобедренный треугольник основание - диаметр основания конуса d, боковые стороны - образующие конуса l.
по теореме косинусов: d²=l²+l²-2*l*l*cos120°
d²=18+18-2*√18*√18*(-1/2)
d²=54, d=3√6. R=1,5√6
S=π*1,5(√6*3√2+1,5)=1,5*π*(6√2+1,5)
S=1,5π*(6√2+1,5)