Дан куб АВСDА1В1С1D1. Докажите В1D перпендикулярен D1С.
Объяснение:
Введем прямоугольную систему координат: В(0;0;0) ,ось ох по ребру ВА, ось оу по ребру ВС, ось оz по ребру ВВ1 .
Пусть ребро куба а, тогда координаты
В1(0;0;а) ,D (a; a;0) , вектор В1D(a; a;-a) .
D1(a; a; a) ,C(0;a;0), вектор D1C(-a; 0;-a ).
Найдем скалярное произведение в координатах :
В1D×D1C=a×(-a)+a×0+(-a)×(-a)=-a²+0+a²=0. Т.к. скалярное произведение равно нулю, то вектора перпендикулярны, а значит и прямые , на которых лежат эти вектора, перпендикулярны.
Объяснение:
1)На рисунке DC и DB касательные к окружности с центром A, ∠САВ=124°.Найти ∠CDB.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания. ∠АСD= ∠АВD=90°.
АВDС- четырехугольник. Сумма углов четырехугольника 360°.
∠CDB=360°-90°-90°-124°=56°
2)Из одной точки круга проведен диаметр и хорду, которая равна радиусу круга. Найдите угол между ними
Пусть диаметр АВ, хорда АС, О-центр окружности. Известно, что ОА=СА.
ΔОСА-равносторонний, т.к. ОА=ОС как радиусы, ОА=СА по условии.
Значит все углы равны 180°:3=60 °
Угол между хордой и диаметром 60°
Дан куб АВСDА1В1С1D1. Докажите В1D перпендикулярен D1С.
Объяснение:
Введем прямоугольную систему координат: В(0;0;0) ,ось ох по ребру ВА, ось оу по ребру ВС, ось оz по ребру ВВ1 .
Пусть ребро куба а, тогда координаты
В1(0;0;а) ,D (a; a;0) , вектор В1D(a; a;-a) .
D1(a; a; a) ,C(0;a;0), вектор D1C(-a; 0;-a ).
Найдем скалярное произведение в координатах :
В1D×D1C=a×(-a)+a×0+(-a)×(-a)=-a²+0+a²=0. Т.к. скалярное произведение равно нулю, то вектора перпендикулярны, а значит и прямые , на которых лежат эти вектора, перпендикулярны.