В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
Представим 4х, как произведение двух чисел, чтобы одно из них равнялось 2: 2•2х, получаем х^2 - 2•2х + у^2, конструкцию х^2 - 2•2х можно представить в виде квадрата суммы, 2•2х удвоенное произведение 2 на х, тогда х и 2 основа квадрат суммы, то есть: (х^2 - 2•2х + 4) - 4 + у^2 = 12, если убрать скобки и сократить 4 подучится первоначальное выражение, однако они нам нужны, чтобы сократить его до формулы сокращённого умножения: (х-2)^2 - 4 + у^2 = 12, выполняя простые действия получим:
(х-2)^2 + у^2 = 16, а дальше показано.
•Номер 5
Окружность - это обод, следовательно точка прохождения М - точка окончания радиуса окружности, х которого равен х центра окружности, так как он из неё выходит, а у больше у центра, и таким образом мы можем вычислить длину радиуса отняв координату у точки М от координаты у центра: 8-2 = 6.
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .
•Номер 4
Представим 4х, как произведение двух чисел, чтобы одно из них равнялось 2: 2•2х, получаем х^2 - 2•2х + у^2, конструкцию х^2 - 2•2х можно представить в виде квадрата суммы, 2•2х удвоенное произведение 2 на х, тогда х и 2 основа квадрат суммы, то есть: (х^2 - 2•2х + 4) - 4 + у^2 = 12, если убрать скобки и сократить 4 подучится первоначальное выражение, однако они нам нужны, чтобы сократить его до формулы сокращённого умножения: (х-2)^2 - 4 + у^2 = 12, выполняя простые действия получим:
(х-2)^2 + у^2 = 16, а дальше показано.
•Номер 5
Окружность - это обод, следовательно точка прохождения М - точка окончания радиуса окружности, х которого равен х центра окружности, так как он из неё выходит, а у больше у центра, и таким образом мы можем вычислить длину радиуса отняв координату у точки М от координаты у центра: 8-2 = 6.
Объяснил, как смог.