Проведём высоту к основанию ,которая одновременно является и медианой.Из образованного ею прямоугольного треугольника с гипотенузой =10 см и катетом равным половине основания равнобедренного треугольника 12:2=6 см, найдем второй катет.
По теореме Пифагора h=√a²-1/2c²=√10²-6²=√100-36=√64=8 см
SΔ=1/2c*h=1/2*12*8=48 см²
2.
Медиана делит гипотенузу напополам,а середина гипотенузы является центром описанной окружности .Гипотенуза является её диаметром,а медиана треугольника, проведенного из прямого угла,является её радиусом. d=2r r=d/2,значит медиана равна половине гипотенузы.
Проведём медиану KN, которая делит сторону MP на 2 равные части (MK; KP).
Касательная к окружности перпендикулярна к радиусу(ON), проведенному в точку касания, тоесть <MNP = 90°.
Проведём ещё одну медиану OK. Так как треугольник MKN — равнобёдренный(потому что MK & KN проведены через крайние точки диаметра, и имеют третью общую точку), то медиана OK — также является биссектрисой, и высотой, что и означает <MOK = 90°, и что MO == OK == ON.
MO == OK => <OMK == <OKM = 90/2 = 45°
<OMK = x = 45°.
24.
Касательная к окружности перпендикулярна к радиусу(OA), проведенному в точку касания, тоесть <OAC = 90°.
Объяснение:
1.
дано:а=в=10 см,с=12см -основание
найти: SΔ?
Проведём высоту к основанию ,которая одновременно является и медианой.Из образованного ею прямоугольного треугольника с гипотенузой =10 см и катетом равным половине основания равнобедренного треугольника 12:2=6 см, найдем второй катет.
По теореме Пифагора h=√a²-1/2c²=√10²-6²=√100-36=√64=8 см
SΔ=1/2c*h=1/2*12*8=48 см²
2.
Медиана делит гипотенузу напополам,а середина гипотенузы является центром описанной окружности .Гипотенуза является её диаметром,а медиана треугольника, проведенного из прямого угла,является её радиусом. d=2r r=d/2,значит медиана равна половине гипотенузы.
18.
∪ ALB = 72° => <AOB = 72° =>
x = 90-<AOB = 18°.
20.
Проведём медиану KN, которая делит сторону MP на 2 равные части (MK; KP).
Касательная к окружности перпендикулярна к радиусу(ON), проведенному в точку касания, тоесть <MNP = 90°.
Проведём ещё одну медиану OK. Так как треугольник MKN — равнобёдренный(потому что MK & KN проведены через крайние точки диаметра, и имеют третью общую точку), то медиана OK — также является биссектрисой, и высотой, что и означает <MOK = 90°, и что MO == OK == ON.
MO == OK => <OMK == <OKM = 90/2 = 45°
<OMK = x = 45°.
24.
Касательная к окружности перпендикулярна к радиусу(OA), проведенному в точку касания, тоесть <OAC = 90°.
<OAC = 90° => <OAB = <OAC - <BAC => <OAB = 90-40 = 50°
OB == OA => <OAB == <OBA = 50°
<BOA = 180-(50+50) = 80°.
А в 22-ом я пока путаюсь, решу немного позже(сложновато для меня), прости.