Расположим сферу так, чтобы плоскость треугольника была горизонтальной. Тогда вид сверху даёт нам окружность в которую вписан треугольник АВС. Примем АВ=2, ВС=4 корня из2, АС=6. Обратим внимание, что АС квадрат=АВ квадрат+ ВС квадрат. Или 36=4+32. Отсюда -треугольник АВС прямоугольный. Угол В прямой(против большей стороны). Центр описанной окружности в прямоугольном треугольнике лежит на середине гипотенузы.Обозначим эту точку О1. АО1=СО1=3. Это значит, чтоО1 -центр круга полученного сечением сферы плоскостью в которой лежит треугольник АВС. Тогда расстояние от центра сферы до плоскости треугольника АВС будет равно О1О. Где О центр сферы. Рассмотрим вид сбоку. В проекции получаем окружность радиусом равным радиусу сферы R. Проекция плоскости треугольника АВС-хорда АС. Проведём радиусы ОА и ОС. Проведём перпендикуляр ОО1=4(по условию). к АС. Тогда по теореме Пифагора R=корень из(О1С квадрат+ ОО1квадрат)=корень из (9+16)=5.
Высота боковой грани нашей пирамиды равна (из прямоугольного треугольника SPO) SP= SO/Sinβ или SP=H/Sinβ. Из этого же треугольника катет ОР=Н/tgβ. Но ОР - это половина высоты ромба, проведенной через его центр - точку О пересечения диагоналей. Следовательно, высота ромба равна 2Н/tgβ. Острый угол основания (ромба) равен (180-α)° (так как углы ромба, прилежащие к одной стороне, равны в сумме 180°). Заметим, что Sin(180-α) = Sinα (формула приведения). Тогда сторона ромба из прямоугольного треугольника АВТ, где ВТ - высота ромба, проведенная из вершины тупого угла), равна АВ=ВТ/Sinα. Или АВ=2Н/(Sinα*tgβ). Площадь основания (ромба) равна So=а²Sinα. Или So=4Н²/(Sinα*tg²β). Площадь боковой грани пирамиды равана Sг=(1/2)a*Hг=(1/2)*2Н/(Sinα*tgβ)*(H/Sinβ)=Н²/(Sinα*tgβ*Sinβ). Тогда площадь полной поверхности пирамиды равна S=4Н²/(Sinα*tg²β) + 4Н²/(Sinα*tgβ*Sinβ) =(4Н²/(Sinα*tgβ))*(1/tgβ+1/Sinβ) = 4Н²*Cosβ(1+Cosβ)/Sinα*Sin²β. Применив формулу ctg(β/2) = (1+Cosβ)/Sinβ, получим: S=4Н²*ctgβ*ctg(β/2)/Sinα.
Расположим сферу так, чтобы плоскость треугольника была горизонтальной. Тогда вид сверху даёт нам окружность в которую вписан треугольник АВС. Примем АВ=2, ВС=4 корня из2, АС=6. Обратим внимание, что АС квадрат=АВ квадрат+ ВС квадрат. Или 36=4+32. Отсюда -треугольник АВС прямоугольный. Угол В прямой(против большей стороны). Центр описанной окружности в прямоугольном треугольнике лежит на середине гипотенузы.Обозначим эту точку О1. АО1=СО1=3. Это значит, чтоО1 -центр круга полученного сечением сферы плоскостью в которой лежит треугольник АВС. Тогда расстояние от центра сферы до плоскости треугольника АВС будет равно О1О. Где О центр сферы. Рассмотрим вид сбоку. В проекции получаем окружность радиусом равным радиусу сферы R. Проекция плоскости треугольника АВС-хорда АС. Проведём радиусы ОА и ОС. Проведём перпендикуляр ОО1=4(по условию). к АС. Тогда по теореме Пифагора R=корень из(О1С квадрат+ ОО1квадрат)=корень из (9+16)=5.
SP=H/Sinβ.
Из этого же треугольника катет ОР=Н/tgβ.
Но ОР - это половина высоты ромба, проведенной через его центр - точку О пересечения диагоналей.
Следовательно, высота ромба равна 2Н/tgβ.
Острый угол основания (ромба) равен (180-α)° (так как углы ромба, прилежащие к одной стороне, равны в сумме 180°).
Заметим, что Sin(180-α) = Sinα (формула приведения).
Тогда сторона ромба из прямоугольного треугольника АВТ, где ВТ - высота ромба, проведенная из вершины тупого угла), равна АВ=ВТ/Sinα. Или АВ=2Н/(Sinα*tgβ).
Площадь основания (ромба) равна So=а²Sinα. Или
So=4Н²/(Sinα*tg²β).
Площадь боковой грани пирамиды равана
Sг=(1/2)a*Hг=(1/2)*2Н/(Sinα*tgβ)*(H/Sinβ)=Н²/(Sinα*tgβ*Sinβ).
Тогда площадь полной поверхности пирамиды равна
S=4Н²/(Sinα*tg²β) + 4Н²/(Sinα*tgβ*Sinβ) =(4Н²/(Sinα*tgβ))*(1/tgβ+1/Sinβ) = 4Н²*Cosβ(1+Cosβ)/Sinα*Sin²β.
Применив формулу ctg(β/2) = (1+Cosβ)/Sinβ, получим:
S=4Н²*ctgβ*ctg(β/2)/Sinα.