Т.к. ac=a1c1, и bm, b1m1 - медианы, то am=cm=a1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - bm=b1m1 по условию; - am=a1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними: - bm=b1m1 по условию; - сm=c1m1 как было показано выше; - углы bmc и b1m1c1 равны как доказано выше. У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
am=cm=a1m1=c1m1.
Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам:
- ab=a1b1 по условию;
- bm=b1m1 по условию;
- am=a1m1 как только что доказано.
У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой.
Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними:
- bm=b1m1 по условию;
- сm=c1m1 как было показано выше;
- углы bmc и b1m1c1 равны как доказано выше.
У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1.
Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
тогда углы при основании <Вп=(180-120) /2 = 30
углы при основании являются вписанными <Вп - опираются на хорды ( боковая сторона)
на эту же хорду/сторону опирается центральный угол <Цн
центральный угол в 2 раза больше вписанного <Цн =2* <Вп = 2*30=60 град
из центра описанной окружности боковые стороны видны под углом 60 град
основание видно под углом 2*<Цн =2*60=120 град
2.Треугольник АВС,
уголА=36,
уголС=48,
уголВ=180-36-48=96,
центр вписанной окружности О лежит на пересечении биссекрис, треугольник АОС,
уголАОС=180-1/2уголА-1/2уголС=180-18-24=138 - видна сторона АС, треугольник АОВ,
уголАОВ=180-1/2уголА-1/2уголВ=180-18-48=114-видна сторона АВ,
треугольник ВОС, уголВОС=180-1/2уголС-1/2уголВ=180-24-48=108 - видна стгорона ВС
3.четырехугольник АВСД вписан в окружность, уголА/уголВ/уголС=3/4/6=3х/4х/6х,
около четырехугольника можно описать окружность при условии что сумма противоположных углов=180,
уголА+уголС=180=уголВ+уголД, 3х+6х=4х+уголД, уголД=9х-4х=5х, 3х+6х=180, х=20, уголА=3*20=60, уголВ=4*20=80, уголС=6*20=120, уголД=5*20=100
4.AB+DC=AD+BC P=48 48:2=24 AB+DC=24 AD+BC=24 x+4 - AB x - CD x+x+4=24 x=10 14=AB 10=CD 1y - BC 2y - AD 1y+2y=24 y=8 8=BC 16=AD