Определение 1: Правильный тетраэдр - это тетраэдр, у которого все грани - правильные треугольники. Определение 2: Угол между скрещивающимися прямыми a и b — это угол между пересекающимися прямыми a′ и b′, такими, что a′ || a и b′|| b.
Примем длину ребра тетраэдра равной а. Проведем КM || CD Угол КМА - искомый. КM - средняя линия треугольника BCD ⇒ KM=CD/2=a/2 DK=KB Соединим А и К. АК и АМ -медианы ( и высоты) правильных треугольников АВD и АВС АК=АМ=(а√3):2 По т.косинусов АК²=АМ²+КM²-2*KМ*AМ*cos∠КМА АК² -АМ²-КM² = -2*АМ*КМ*cos∠КМА (a√3/2)²-(a√3/2)²-(a/2)²= - a*(а√3):2)*cos∠KMA -(а/2)²=- a*(а√3):2)*cos∠KMA= а²/4= (а²√3):2)*cos∠KMA cos∠KMA=а²/4: (а²√3):2 cos∠KMA=1:(2√3)=√3/6≈0,2886 ∠KMA= ≈73º13'
АК, ВМ и СТ - медианы треугольника АВС.
Надо доказать, что АК + ВМ + СТ < АВ + ВС + АС.
Отложим на луче АК отрезок КО = АК.
КО = АК по построению, ВК = КС, так как АК медиана.
Если в четырехугольнике диагонали точкой пересечения делятся пополам, то это параллелограмм.
Значит АВОС - параллелограмм. Тогда ВО = АС.
Каждая сторона треугольника меньше суммы двух других сторон, значит в треугольнике АВО: АО < AB + BO, а значит и 2АК < АВ + АС, т.е.
АК < 1/2 (АВ + АС)
Аналогично, построив параллелограммы с диагоналями, содержащими две другие медианы, докажем , что
ВМ < 1/2 (ВА + ВС) и
СТ < 1/2 (СА + СВ)
Сложим эти три неравенства:
АК + ВМ + СТ < 1/2 АВ + 1/2 АС + 1/2 ВА + 1/2 ВС + 1/2 СА + 1/2 СВ
АК + ВМ + СТ < АВ + АС + ВС
АК + ВМ + СТ < Рabc
Правильный тетраэдр - это тетраэдр, у которого все грани - правильные треугольники.
Определение 2:
Угол между скрещивающимися прямыми a и b — это угол между пересекающимися прямыми a′ и b′, такими, что a′ || a и b′|| b.
Примем длину ребра тетраэдра равной а.
Проведем КM || CD
Угол КМА - искомый.
КM - средняя линия треугольника BCD ⇒
KM=CD/2=a/2
DK=KB
Соединим А и К.
АК и АМ -медианы ( и высоты) правильных треугольников АВD и АВС
АК=АМ=(а√3):2
По т.косинусов
АК²=АМ²+КM²-2*KМ*AМ*cos∠КМА
АК² -АМ²-КM² = -2*АМ*КМ*cos∠КМА
(a√3/2)²-(a√3/2)²-(a/2)²= - a*(а√3):2)*cos∠KMA
-(а/2)²=- a*(а√3):2)*cos∠KMA=
а²/4= (а²√3):2)*cos∠KMA
cos∠KMA=а²/4: (а²√3):2
cos∠KMA=1:(2√3)=√3/6≈0,2886
∠KMA= ≈73º13'