Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему. ==== Смотрите рисунок, приложенный к ответу. Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет, Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: Отсюда: Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше . Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет,
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть:
Отсюда:
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше .
Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
Найдем, наконец,
Это ответ.
ABCD-Ромб
Bd=13см(меньшая диагональ)
BH=12см
Найти S
у Треугольника BDH угол H=90 градусов,BD=13,BH=12cm теперь по тиареме Пифагора:
HD=Под Корнем BD(D в квадрате)-BH(Hв квадрате)=под корнем 13в квадрате-12в квадрате=5 см
теперь 2 у трегуольника ABH Угол h=90 градусов,BH=12,AH=AD-HD=(AB-5)cm теперь по теореме пифагора
AB(B в квадрате)=AH(H в квадрате)+BH(H в квадрате)
AB(B в квадрате)=(AB-5)в квадрате+12 в квадрате
AB(B в квадрате)=AB(B в квадрате)-10AB+25+144,10AB=169
AB=16.9
и Теперь Находим площадь
S=Ab умножить на BH=16,9 умножить на 12=202,8см(см в квадрате)
S=202.8см