1) ΔАВС: ∠А=α, ∠С=2α, ∠В=180°-3α; 2) ΔADC: ∠A=α, ∠C=α, ∠D=180°-2α, значит ΔADC - равнобедренный, AD=DC. 3) Так как отрезок CD - биссектриса, то можно применить следующее свойство биссектрисы: AC:BC=AD:DB, по условию задачи DB:BC=1:2, значит DB=x, BC=2x. 6:2х=AD:x; AD=6x/2x=3 (см). AD=DC=3 см, АС=6 см - по условию. Получили треугольник со сторонами 3 см, 3 см и 6 см, но такого треугольника не существует, так как любая сторона треугольника должна быть меньше суммы двух других сторон (неравенство треугольника), а в этой задаче получилось, что одна из сторон равна сумме двух других (3+3=6). Это противоречие. Поэтому задача с таким условием не имеет решения. ответ: нет решения.
2) ΔADC: ∠A=α, ∠C=α, ∠D=180°-2α, значит
ΔADC - равнобедренный, AD=DC.
3) Так как отрезок CD - биссектриса, то можно применить следующее свойство биссектрисы: AC:BC=AD:DB,
по условию задачи DB:BC=1:2, значит DB=x, BC=2x.
6:2х=AD:x;
AD=6x/2x=3 (см).
AD=DC=3 см, АС=6 см - по условию.
Получили треугольник со сторонами 3 см, 3 см и 6 см, но такого треугольника не существует, так как любая сторона треугольника должна быть меньше суммы двух других сторон (неравенство треугольника), а в этой задаче получилось, что одна из сторон равна сумме двух других (3+3=6). Это противоречие. Поэтому задача с таким условием не имеет решения.
ответ: нет решения.
∠BAD+∠BCD = 180°;
∠BCA = 180°-∠BAD = 180°-120° = 60°
Вписанные углы опирающиеся на одну дугу равны.∠CAD - вписанный и опирается на ∪CD
∠CBD - вписанный и опирается на ∪CD
∠CAD = ∠CBD
По теореме синусов в треугольнике CBD:По основному тригонометрическому тождеству (sin²α+cos²α=1):Пусть BC=x, тогда 0<x<4.
Рассмотрим случай, когда cos(CBD) = 1/7По теореме косинусов в треугольнике CBD:
x²-2x-15 = 0
D = (-2)²-4·1·(-15) = 4+60 = 8²
x₁ = (2+8)/2 = 10/2 = 5
x₂ = (2-8)/2 = -6/2 = -3
Ни один корень не подходит под условие 0<x<4.
Теперь случай, когда cos(CBD) = -1/7По теореме косинусов в треугольнике CBD:
x²+2x-15 = 0
D = 2²-4·1·(-15) = 4+60 = 8²
x₃ = (-2+8)/2 = 6/2 = 3
x₄ = (-2-8)/2 = -10/2 = -5
0 < x₃ < 4
x = 3 удовлетворяет условию, значит cos(CBD) = -1/7.
cos(CBD) < 0, а sin(CBD) > 0. Поэтому ∠CBD - угол второй четверти, тогда ∠CBD = arccos(-1/7)
∠CAD = arccos(-1/7)
ответ: arccos(-1/7).