Даны длины трех отрезков. Выберите варианты, для которых возможно построить треугольник со
сторонами из данных отрезков.
Отметьте все соответствующие ответы:
36.5 см, 24,5 см, 15.5 см
54.5 см, 23 см, 36.5см
14.5 см, 19.5 см, 27 см
18 см, 9 см, 6 см
24,5 см, 33.5 см, 47 см
28.5 см, 46.5 см, 24 см
22 см, 30 см, 56 см
Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.
Данное утверждение не доказывается, а является формулировкой аксиомы параллельности.
Если в формулировке звучит, что существует только одна прямая параллельная данной, то эта аксиома для геометрии Евклида.
Если две, то это геометрия Лобачевского.
Если таких прямых не существует, то геометрия Римана.
2.Возможны три варианта взаимного расположения прямой и плоскости. Взаимное расположение прямой и плоскости.
Прямая параллельна плоскости, если она не имеет с плоскостью общих точек. На левомрисунке прямая параллельна плоскости .
2. Прямая пересекает плоскость, если она имеет с плоскостью ровно одну общую точку.
3. Прямая лежит в плоскости, если каждая точка прямой принадлежит этой плоскости.