Даны длины трех отрезков. выберите варианты, для которых возможно построить треугольник со сторонами из данных отрезков. отметьте все соответствующие ответы: 36 см, 60 см, 20 см 15.5 см, 18.5 см, 46 см 6 см, 9 см, 19 см 31.5 см, 19.5 см, 16.5 см 20 см, 60 см, 28 см 10.5 см, 14.5 см, 16.5 см 32 см, 20 см, 44 см
1. Фраза "Из молока получают 10% творога" означает, что из молока получают 10/100 или 0,1 творога. Чтобы найти массу творога, умножаем 40 на 0,1 получаем 4
2. То же самое, что и предыдущая, но теперь умножаем 20 кг на 0,107
3. Обозначим катет, который надо найти за x. Теперь по теореме Пифагора составляем уравнение
5^2+x^2=(x+1)^2
25+x^2=x^2+2x+1
2x=24
x=12
ответ:12 см
4. С ромбе все четыре стороны равны, то есть одна сторона ромба равна 24/4=6 см. Если угол, смежный с одим из углов этого ромба равен 30, то сам угол ромба равен (180-30)=150 градусам. Теперь находим площадь. Так как ромб состоит из двух равных треугольников (стороны ромба равны, диагональ, лежащая против угла в 150 градусов - общая - по терм сторонам) а площадь каждого из них равна 6*6*0,5*sin150 (по теореме синусов) то площадь всего ромба будет равна 6*6*sin150=18 см
Предположим, что это параллелограмм АВСД, ВН=12 - высота к стороне АД, ВН1=20 - высота к стороне СД. Угол НВН1=60. В прямоугольном треугольнике Н1ВС угол Н1ВС=угол НВС-угол НВН1=90-60=30. В прямоугольном треугольнике (Н1ВС) против угла в 30 градусов лежит катет (СН1) равный половине гипотенузы (ВС). Примем катет СН1 за х, тогда, ВС=2х по теореме Пифагора ВС в квадрате= ВН1 в квадрате+СН1 в квадрате. Подставляем цифры и х: 2х в квадрате=20 в квадрате+х в квадрате,3х в квадрате=400, х=20 корней из 1/3, тогда ВС=2*20 корней из 1/3=40 корней из 1/3. Площадь = АД*ВН (АД=ВС - так как АВСД параллелограмм) Площадь=40 корней из 1/3*12=480 корней из 1/3