Даны два равных треугольника: ABC и ABAC Определи, какое высказывание соответствует третьему признаку равенства треугольников
Верных ответов: 1
1) /_А=/_А1, АВ=А1В1, AC=А1C1.
2) /_А=/_А1, /_В=/_B1, AВ=А1В1.
3) АВ=А1В1, АС=А1C1, ВС=В1С1
4) /_А=/_А1, /_В=/_В1, /_С=/_С1
Герои произведений Дуня из "Станционного смотрителя" А.С.Пушкина и Настя из "Телеграммы" К.Г.Паустовского похожи, несмотря на то что авторы создавали свои произведения в разные века. Обе девушки забывают о своем долге перед родителями, Дуня уезжает с офицером Минским, забыв о своем отце, а Настя . в Ленинград. И Самсон Вырин, и Катерина Петровна страдают от одиночества, тоскуют по своим детям, а впоследствии умирают. При жизни дети так и не нашли возможности навестить своих родителей, приезжают только на могилы, когда тех уже не станет.
65° и 115°
Объяснение:
Углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными, а углы 3 и 6, 4 и 5 называются односторонними (см. рисунок). Заметим, что в таком случае углы 2 и 6 равны: ∠2 = ∠6.
По условию разность двух односторонних углов, то есть ∠6 и ∠3, при пересечении двух параллельных секущей равна 50 градусам:
∠6 - ∠3 = 50°. Тогда по замечанию ∠2 - ∠3 = ∠6 - ∠3 = 50°.
Но углы 2 и 3 смежные и поэтому ∠2 + ∠3 = 180°
Имеем систему равенств:
∠2 - ∠3 = 50° (1)
∠2 + ∠3 = 180° (2)
Из уравнения (1) выразим ∠2 через ∠3:
∠2 = 50° + ∠3
Подставим выражение ∠2 в (2):
50° + ∠3 + ∠3 = 180° или
2·∠3 = 180° - 50° или
2·∠3 = 130° или
∠3 = 130° : 2 = 65°.
Тогда ∠2 = 50° + ∠3 = 50° + 65° = 115°
ответ: 65° и 115°