Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
Смотри рисунок. Пусть угол OCK=2х, тогда угол OCB равен х. Их сумма 180градусов, т.к. они смежные. х+2х=180 3х=180 х=60 - это угол OCB. Рассмотрим треугольник ОВС - он прямоугольный (угол ВОС=90градусов, угол ОСВ = 60 градусов) значит угол ОВС = 180-90-60=30 градусов Запишем для угла OCB: cos 60 = BC/AC поскольку по условию AC=100, имеем cos 60= BC/100⇒ BC = 100× cos 60 cos 60 - это табличная величина = 1/2 BC= 100×1/2=50 Запишем для угла OBC: sin 30 = OC/BC ⇒ OC= BC × sin 30= 50 × 1/2=25 sin 30 - это табличная величина = 1/ 2 ответ: OC=25
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D
По теореме Пифагора DC₁²=6²+8²=100
DC₁=10
РК- средняя линия треугольника DCC₁
PK=5
PT|| AD и PT || ВС
РТ=4
AD⊥CD ⇒ РТ⊥СD
AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК
РТ⊥ РК
Аналогично, МТ ⊥МК
Сечение представляет собой прямоугольник
Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
Пусть угол OCK=2х, тогда угол OCB равен х. Их сумма 180градусов, т.к. они смежные.
х+2х=180
3х=180
х=60 - это угол OCB.
Рассмотрим треугольник ОВС - он прямоугольный (угол ВОС=90градусов, угол ОСВ = 60 градусов) значит угол ОВС = 180-90-60=30 градусов
Запишем для угла OCB:
cos 60 = BC/AC поскольку по условию AC=100, имеем
cos 60= BC/100⇒ BC = 100× cos 60
cos 60 - это табличная величина = 1/2
BC= 100×1/2=50
Запишем для угла OBC:
sin 30 = OC/BC ⇒ OC= BC × sin 30= 50 × 1/2=25
sin 30 - это табличная величина = 1/ 2
ответ: OC=25