Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности. Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12 Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед² Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2 Площадь трапеции: Sт=h(a+b)/2=6√2 Общая площадь: Sобщ=Sт+Sбок=30+6√2 ответ: a. 30+6
5 номер
В равнобедренном треугольнике две стороны равны.
По неравенству сторон треугольника знаем, что сумма двух сторон треугольника не может быть меньше третьей.
Предположим, что третья сторона равна 4 см.
Проверим, 4+4<9 - не подходит.
9+9>4 - подходит, значит, третья сторона = 9 см
6 номер
1)Рассмотрим треугольник DME:
предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и
угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
2)Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
7 номер
<B = 180° - (79°+ 55°)= 46° .
<C = 180° - ( 46° + 55°) = 79° .
< А = 55° (по условию).
Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12
Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед²
Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2
Площадь трапеции: Sт=h(a+b)/2=6√2
Общая площадь: Sобщ=Sт+Sбок=30+6√2
ответ: a. 30+6