Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
Центры описанной около равностороннего треугольника окружности и вписанной в равносторонний треугольник окружности совпадают с точкой пересечения медиан, высот, биссектрис. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Поэтому радиусы так и будут относиться 2:1.
======================================
Можно найти отношение через формулы. Пусть сторона треугольника равна а. Тогда
- радиус описанной окружности
- радиус вписанной окружности
Радиус описанной окружности в 2 раза больше радиуса вписанной окружности.
AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см
Центры описанной около равностороннего треугольника окружности и вписанной в равносторонний треугольник окружности совпадают с точкой пересечения медиан, высот, биссектрис. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Поэтому радиусы так и будут относиться 2:1.
======================================
Можно найти отношение через формулы. Пусть сторона треугольника равна а. Тогда
- радиус описанной окружности
- радиус вписанной окружности
Радиус описанной окружности в 2 раза больше радиуса вписанной окружности.
ответ: R : r = 2 : 1