Даны координаты точек a и b и радиус (r) точки b. найти координаты точки c, если известно: 1. точка с лежит на прямой ab. ab = ac + cb. 2. ac не равно cb. 3. cb = r.
Графиком линейной функции y=kx является прямая, проходящая через начало координат. функции y=kx , так как проходит через начало координат. Нужно лишь определить значение коэффициента k . Из формулы линейной функции y=kx получим, что k=yx .
Поэтому для определения коэффициента k достаточно взять любую точку на прямой и найти отношение ординаты этой точки к её абсциссе.
Прямая проходит через точку M(4;2) , а для этой точки имеем 24=0,5 . Значит, k=0,5 , и данная прямая является графиком линейной функции y=0,5x .
График линейной функции y=kx обычно строят так: берут точку (1;k) (если x=1 , то из равенства y=kx выводим, что y=k ) и проводят прямую через эту точку и начало координат. Иногда вместо точки (1;k) можно взять другую точку, более удобную.
Из формулы линейной функции y=kx получим, что k=yx .
Поэтому для определения коэффициента k достаточно взять любую точку на прямой и найти отношение ординаты этой точки к её абсциссе.
Прямая проходит через точку M(4;2) , а для этой точки имеем 24=0,5 . Значит, k=0,5 , и данная прямая является графиком линейной функции y=0,5x .
График линейной функции y=kx обычно строят так: берут точку (1;k) (если x=1 , то из равенства y=kx выводим, что y=k ) и проводят прямую через эту точку и начало координат.
Иногда вместо точки (1;k) можно взять другую точку, более удобную.
1. Sкр = πR²
S = π · 3,1² = 9,61π см²
2. С = 2πR
C = 2π · 0,4 = 0,8π м
3. R = 2,5 см
Длина окружности:
С = 2πR
C = 2π · 2,5 = 5π см
Сторона треугольника:
a = R√3 = 2,5 · √3 = 5√3/2 см
Периметр треугольника:
Р = 3а = 3 · 5√3/2 = 15√3/2 см
Площадь треугольника:
S = a²√3/4 = (5√3/2)² · √3 / 4 = 75√3/16 см²
4. Sсект = πR² · α/360°
Sсект = π · 5² · 60°/360° = 25π/6 см²
5. Сторона правильного шестиугольника:
а₆ = Р / 6 = 12 / 6 = 2 см
Сторона правильного шестиугольника равна радиусу описанной около него окружности:
R = a₆ = 2 см
Эта же окружность вписана в квадрат. Радиус вписанной в квадрат окружности равен половине стороны квадрата:
R = a₄ / 2
a₄ = 2R = 4 см